Bennett Aerospace, Inc., Cary, North Carolina, United States of America.
Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America.
PLoS One. 2019 May 7;14(5):e0216116. doi: 10.1371/journal.pone.0216116. eCollection 2019.
Mutations that confer herbicide resistance are a primary concern for herbicide-based chemical control of invasive plants and are often under-characterized structurally and functionally. As the outcome of selection pressure, resistance mutations usually result from repeated long-term applications of herbicides with the same mode of action and are discovered through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target protein, the impact of genetic mutations on ligand binding could be evaluated and resistance mutations could be identified using a biophysics-based computational approach. Briefly, the 3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were constructed by homology modeling, docking and molecular dynamics simulation. The resistance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl, was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated) using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechanical (QM/MM) methods in combination with three structure sampling strategies. By comparing predicted resistance with experimentally determined resistance in the 29 biotypes of K. scoparia field populations, we identified the best method (i.e., MM-PBSA with single structure) out of all tested methods for the herbicide-KsAHAS system, which exhibited the highest accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case basis.
赋予除草剂抗性的突变是基于除草剂的化学控制入侵植物的主要关注点,并且其结构和功能通常描述不足。作为选择压力的结果,抗性突变通常是由于相同作用模式的除草剂的反复长期应用而产生的,并且是通过广泛的田间试验发现的。在这里,我们以冰草乙酰羟酸合酶 (KsAHAS) 为例,证明了在给定目标蛋白序列的情况下,可以使用基于生物物理的计算方法来评估遗传突变对配体结合的影响,并鉴定抗性突变。简而言之,通过同源建模、对接和分子动力学模拟构建了野生型 (WT) 和突变 KsAHAS-除草剂复合物的 3D 结构。通过使用 6 种分子力学 (MM) 和 18 种混合量子力学/分子力学 (QM/MM) 方法结合三种结构采样策略,估计了 29 种 KsAHAS(1 种 WT 和 28 种突变)与两种 AHAS 抑制剂的结合亲和力,获得了两种 AHAS 抑制剂的抗药性概况:三甲嘧磺隆和噻吩磺隆甲基。通过比较 29 种冰草田间种群的 29 种生物型的预测抗性与实验测定的抗性,我们确定了用于除草剂-KsAHAS 系统的所有测试方法中最佳的方法(即带有单个结构的 MM-PBSA),该方法在区分赋予两种 AHAS 抑制剂抗性或敏感性的突变方面表现出最高的准确性(高达 100%)。我们的研究结果表明,基于计算机的方法具有潜力,可以根据具体情况广泛用于评估突变赋予的除草剂抗性。