Suppr超能文献

通过巯基封端硅烷将水凝胶微结构和蛋白质附着到玻璃上。

Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes.

机构信息

Department of Biomedical Engineering, University of California, Davis, CA 95616, United States.

出版信息

Colloids Surf B Biointerfaces. 2012 Oct 1;98:1-6. doi: 10.1016/j.colsurfb.2012.03.025. Epub 2012 Apr 27.

Abstract

Micropatterning strategies often call for attachment of non-fouling biomaterials and immobilization of proteins in order to create biosensing surfaces or to control cell-surface interactions. Our laboratory has made frequent use of hydrogel photolithography - a micropatterning process for immobilizing poly(ethylene glycol) (PEG) hydrogel microstructures on glass surfaces. In the present study we explored the use of thiolsilane as a coupling layer for both covalent anchoring of hydrogel microstructures and covalent immobilization of proteins on glass. These new surfaces were compared to acryl-silane functionalized glass slides that allowed covalent attachment of gels but only physical adsorption of proteins as well as surfaces containing a mixture of both functional groups. We observed comparable attachment and retention of hydrogel microstructures on acryl and thiol-terminated silanes. Ellipsometry studies revealed presence of significantly higher level of proteins on thiol-functionalized glass. Overall, our studies demonstrate that thiol-silane functionalized glass surfaces may be used to create complex micropatterned surfaces comprised of covalently attached hydrogels and proteins. This simple and effective surface modification strategy will be broadly applicable in cellular engineering and biosensing studies employing hydrogel micropatterns.

摘要

微图案化策略通常需要附着非粘性生物材料和蛋白质固定化,以创建生物传感表面或控制细胞表面相互作用。我们实验室经常使用水凝胶光聚合 - 一种将聚(乙二醇)(PEG)水凝胶微结构固定在玻璃表面的微图案化过程。在本研究中,我们探索了使用硫醇硅烷作为偶联层,用于水凝胶微结构的共价固定和蛋白质在玻璃上的共价固定。这些新表面与丙烯酰基硅烷功能化的玻璃载玻片进行了比较,后者允许凝胶的共价附着,但仅允许蛋白质的物理吸附,以及含有这两种官能团混合物的表面。我们观察到丙烯酰基和硫醇终止的硅烷上的水凝胶微结构具有相似的附着和保留。椭圆光度法研究表明,在巯基功能化玻璃上存在明显更高水平的蛋白质。总的来说,我们的研究表明,巯基硅烷功能化玻璃表面可用于创建由共价附着的水凝胶和蛋白质组成的复杂微图案化表面。这种简单有效的表面修饰策略将在使用水凝胶微图案的细胞工程和生物传感研究中广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验