Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0358, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15646-50. doi: 10.1073/pnas.1119863109. Epub 2012 May 31.
The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Re(bipy-tBu)(CO)(3)(L) catalyst for the reduction of CO(2) to CO. A remarkable selectivity for CO(2) over H(+) was observed by stopped-flow UV-vis spectroscopy of Re(bipy-tBu)(CO)(3). The reaction with CO(2) is about 25 times faster than the reaction with water or methanol at the same concentrations. X-ray crystallography and DFT studies of the doubly reduced anionic species suggest that the highest occupied molecular orbital (HOMO) has mixed metal-ligand character rather than being purely doubly occupied d(z)(2), which is believed to determine selectivity by favoring CO(2) (σ + π) over H(+) (σ only) binding. Electrocatalytic studies performed with the addition of Brönsted acids reveal a primary H/D kinetic isotope effect, indicating that transfer of protons to Re -CO(2) is involved in the rate limiting step. Lastly, the effects of electrode surface modification on interfacial electron transfer between a semiconductor and catalyst were investigated and found to affect the observed current densities for catalysis more than threefold, indicating that the properties of the electrode surface need to be addressed when developing a homogeneous artificial photosynthetic system.
有效的人工光合作用系统设计需要优化几个重要的相互作用。本文报道了 Re(bipy-tBu)(CO)(3)(L)催化剂用于 CO2 还原为 CO 的停流紫外可见(UV-vis)光谱、X 射线晶体学、密度泛函理论(DFT)和电化学动力学研究。通过[Re(bipy-tBu)(CO)(3)]-1 的停流 UV-vis 光谱观察到对 CO2 具有显著的选择性,而对 H+的选择性较低。与水或甲醇在相同浓度下的反应相比,与 CO2 的反应速度快约 25 倍。对双还原阴离子物种的 X 射线晶体学和 DFT 研究表明,最高占据分子轨道(HOMO)具有混合的金属-配体特征,而不是纯粹的双占据 d(z)(2),这被认为通过有利于 CO2(σ + π)而不是 H+(σ 仅)结合来决定选择性。添加 Brönsted 酸进行的电催化研究揭示了主要的 H/D 动力学同位素效应,表明质子向 Re-CO2 的转移涉及到速率限制步骤。最后,研究了半导体和催化剂之间界面电子转移对电极表面修饰的影响,发现这对观察到的催化电流密度的影响超过三倍,这表明在开发均相人工光合作用系统时需要考虑电极表面的性质。