Kaushik Tannu, Ghosh Suchismita, Dolkar Thinles, Biswas Rathindranath, Dutta Arnab
Interdisciplinary Program Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
ACS Nanosci Au. 2024 Jun 10;4(5):273-289. doi: 10.1021/acsnanoscienceau.4c00009. eCollection 2024 Oct 16.
Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic-molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic-molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.
人们为推进人工光合作用材料付出了巨大努力,旨在高效收集光能并催化诸如制氢和CO转化等反应。等离子体纳米材料的应用因其优异的光吸收特性以及在纳米尺度上限制太阳能的能力,成为实现这一目标的一个有前景的选择。在这方面,将等离子体粒子与分子催化剂耦合提供了一条制备高性能混合催化剂的途径。在本综述中,我们讨论了等离子体 - 分子复合杂化催化剂,其中等离子体纳米粒子作为光收集单元,并与驱动化学转化的分子催化剂协同促进界面电荷转移。在初始部分,我们简要概述了等离子体纳米材料及其光物理性质。然后我们探讨最近的突破,突出文献报道中涉及等离子体 - 分子复合杂化物在各种催化过程中的例子。等离子体材料与分子催化剂结合使用代表了一个相对未被探索的领域,具有尚未实现的巨大潜力。本综述为探索等离子体诱导的热电子介导的光电化学小分子活化反应奠定了坚实的基础并提供了动力。利用原位光谱研究和超快瞬态吸收光谱,它为可扩展和可持续的天线 - 反应器系统提供了一个全面的模板。