Suppr超能文献

水溶性钌(III)-亚硝酰配合物的合成、光谱分析和光解。

Synthesis, spectroscopic analysis and photolabilization of water-soluble ruthenium(III)-nitrosyl complexes.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Dalton Trans. 2012 Jul 14;41(26):8047-59. doi: 10.1039/c2dt30464c. Epub 2012 Jun 7.

Abstract

In this paper, the synthesis, structural and spectroscopic characterization of a series of new Ru(III)-nitrosyls of {RuNO}(6) type with the coligand TPA (tris(2-pyridylmethyl)amine) are presented. The complex [Ru(TPA)Cl(2)(NO)]ClO(4) (2) was prepared from the Ru(III) precursor [Ru(TPA)Cl(2)]ClO(4) (1) by simple reaction with NO gas. This led to the surprising displacement of one of the pyridine (py) arms of TPA by NO (instead of the substitution of a chloride anion by NO), as confirmed by X-ray crystallography. NO complexes where TPA serves as a tetradentate ligand were obtained by reacting the new Ru(II) precursor [Ru(TPA)(NO(2))(2)] (3) with a strong acid. This leads to the dehydration of nitrite to NO(+), and the formation of the {RuNO}(6) complex Ru(TPA)(ONO)(NO)(2) (4), which was also structurally characterized. Derivatives of 4 where nitrite is replaced by urea (5) or water (6) were also obtained. The nitrosyl complexes obtained this way were then further investigated using IR and FT-Raman spectroscopy. Complex 2 with the two anionic chloride coligands shows the lowest N-O and highest Ru-NO stretching frequencies of 1903 and 619 cm(-1) of all the complexes investigated here. Complexes 5 and 6 where TPA serves as a tetradentate ligand show ν(N-O) at higher energy, 1930 and 1917 cm(-1), respectively, and ν(Ru-NO) at lower energy, 577 and 579 cm(-1), respectively, compared to 2. These vibrational energies, as well as the inverse correlation of ν(N-O) and ν(Ru-NO) observed along this series of complexes, again support the Ru(II)-NO(+) type electronic structure previously proposed for {RuNO}(6) complexes. Finally, we investigated the photolability of the Ru-NO bond upon irradiation with UV light to determine the quantum yields (φ) for NO photorelease in complexes 2, 4, 5, and additional water-soluble complexes [Ru(H(2)edta)(Cl)(NO)] (7) and [Ru(Hedta)(NO)] (8). Although {RuNO}(6) complexes are frequently proposed as NO delivery agents in vivo, studies that investigate how φ is affected by the solvent water are lacking. Our results indicate that neutral water is not a solvent that promotes the photodissociation of NO, which would present a major obstacle to the goal of designing {RuNO}(6) complexes as photolabile NO delivery agents in vivo.

摘要

本文介绍了一系列新型RuNO型 Ru(III)-亚硝酰配合物的合成、结构和光谱表征,这些配合物带有共配体 TPA(三(2-吡啶甲基)胺)。通过 Ru(III)前体Ru(TPA)Cl2(1)与 NO 气体的简单反应制备了配合物[Ru(TPA)Cl2(NO)]ClO4(2)。这导致了 TPA 的一个吡啶(py)臂被 NO 取代(而不是由 NO 取代氯离子),这一点通过 X 射线晶体学得到了证实。通过新的 Ru(II)前体Ru(TPA)(NO2)2与强酸反应,得到了 TPA 作为四齿配体的 NO 配合物。这导致亚硝酸盐脱水生成 NO(+),并形成[Ru(TPA)(ONO)(NO)]PF6(2)(4),该配合物也进行了结构表征。通过 4 中的亚硝酸盐被脲(5)或水(6)取代,也得到了 4 的衍生物。通过这种方式获得的亚硝酰配合物进一步通过红外和傅里叶变换拉曼光谱进行了研究。带有两个阴离子氯配体的 2 配合物显示出所有研究配合物中最低的 N-O 和最高的 Ru-NO 伸缩频率,分别为 1903 和 619 cm-1。作为四齿配体的 5 和 6 配合物的ν(N-O)在更高的能量处,分别为 1930 和 1917 cm-1,而 ν(Ru-NO)在更低的能量处,分别为 577 和 579 cm-1,与 2 相比。这些振动能,以及在该系列配合物中观察到的ν(N-O)和 ν(Ru-NO)的反向相关,再次支持了先前提出的RuNO配合物的 Ru(II)-NO(+)型电子结构。最后,我们研究了 Ru-NO 键在紫外光照射下的光解性,以确定配合物 2、4、5 以及额外的水溶性配合物[Ru(H2edta)(Cl)(NO)](7)和[Ru(Hedta)(NO)](8)中 NO 光释放的量子产率(φ)。尽管RuNO配合物常被提议作为体内 NO 供体,但缺乏研究如何影响溶剂水的 φ 的研究。我们的结果表明,中性水不是促进 NO 光解的溶剂,这将成为设计体内光解性 NO 供体RuNO配合物的主要障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验