Graduate Group in Biophysics, University of California, San Francisco, California 94158, USA.
Protein Sci. 2012 Aug;21(8):1162-71. doi: 10.1002/pro.2103.
Hsp90, a dimeric ATP-dependent molecular chaperone, is required for the folding and activation of numerous essential substrate "client" proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interactions. Previous structural and biochemical work identified a conserved arginine residue (R380 in yeast) in the Hsp90 middle domain (MD) that is required for wild type hydrolysis activity in yeast, and hence proposed to be a catalytic residue. As part of our investigations on the origins of species-specific differences in Hsp90 conformational dynamics we probed the role of this MD arginine in bacterial, yeast, and human Hsp90s using a combination of structural and functional approaches. While the R380A mutation compromised ATPase activity in all three homologs, the impact on ATPase activity was both variable and much more modest (2-7 fold) than the mutation of an active site glutamate (40 fold) known to be required for hydrolysis. Single particle electron microscopy and small-angle X-ray scattering revealed that, for all Hsp90s, mutation of this arginine abrogated the ability to form the closed "ATP" conformational state in response to AMPPNP binding. Taken together with previous mutagenesis data exploring intra- and intermonomer interactions, these new data suggest that R380 does not directly participate in the hydrolysis reaction as a catalytic residue, but instead acts as an ATP-sensor to stabilize an NTD-MD conformation required for efficient ATP hydrolysis.
Hsp90 是一种二聚体 ATP 依赖性分子伴侣,对于许多必需底物“客户”蛋白(包括核受体、细胞周期激酶和端粒酶)的折叠和激活是必需的。其机制的基础是一组截然不同的构象状态,这些状态是由核苷酸结合和水解以及不同的结构域间相互作用产生的。以前的结构和生化研究工作确定了 Hsp90 中间结构域(MD)中一个保守的精氨酸残基(酵母中的 R380),该残基对于酵母中野生型水解活性是必需的,因此被提议为催化残基。作为我们对 Hsp90 构象动力学物种特异性差异起源研究的一部分,我们使用结构和功能方法组合来研究这个 MD 精氨酸在细菌、酵母和人 Hsp90 中的作用。虽然 R380A 突变使所有三种同源物的 ATP 酶活性受损,但对 ATP 酶活性的影响既可变又比突变活性位点谷氨酸(水解所需的 40 倍)要小得多(2-7 倍)。单颗粒电子显微镜和小角 X 射线散射表明,对于所有 Hsp90 而言,突变这个精氨酸会破坏其对 AMPPNP 结合的封闭“ATP”构象状态的形成能力。与以前探索单体间和单体内相互作用的诱变数据一起,这些新数据表明 R380 不作为催化残基直接参与水解反应,而是作为 ATP 传感器来稳定 NTD-MD 构象,该构象对于有效的 ATP 水解是必需的。