Suppr超能文献

评估用于中风康复的切多克-麦克马斯特中风评估预测方程的准确性。

Estimating the Accuracy of the Chedoke-McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation.

作者信息

Dang Mia, Ramsaran Kalinda D, Street Melissa E, Syed S Noreen, Barclay-Goddard Ruth, Stratford Paul W, Miller Patricia A

机构信息

Mia Dang, BSc Eng, MSc(PT): Physical therapist and graduate of the MSc(PT) Program, School of Rehabilitation Science, McMaster University, Hamilton, Ontario.

出版信息

Physiother Can. 2011 Summer;63(3):334-41. doi: 10.3138/ptc.2010-17. Epub 2011 Aug 10.

Abstract

PURPOSE

To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations.

METHOD

A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated.

RESULTS

Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI.

CONCLUSIONS

This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.

摘要

目的

评估切多克-麦克马斯特卒中评估(CMSA)预测方程的预测准确性和临床实用性。

方法

采用纵向预后研究,使用从104例脑血管意外后入院患者获取的历史数据。提取所有接受卒中后康复治疗且有记录的入院和出院时CMSA评分的患者的数据。使用已发表的预测方程来确定预测结果。为确定预测模型的准确性和临床实用性,计算收缩系数以及带有95%置信区间的预测值。

结果

74例患者有完整数据,平均年龄为65.3±12.4岁。六个功能缺损量表(II)维度的收缩值在-0.05至0.09之间;活动量表(AI)的收缩值为0.21。II维度预测值的相关误差大于±1.5个阶段,AI的相关误差大于±24分。

结论

本研究表明,CMSA的II和AI预测值(由置信区间定义)的较大误差限制了它们作为预测指标的临床实用性。有必要进行进一步研究,使用替代统计程序建立预测模型。

相似文献

5
The Impact of Falls on Motor and Cognitive Recovery after Discharge from In-Patient Stroke Rehabilitation.住院卒中康复出院后跌倒对运动和认知恢复的影响
J Stroke Cerebrovasc Dis. 2016 Jul;25(7):1613-1621. doi: 10.1016/j.jstrokecerebrovasdis.2016.03.017. Epub 2016 Apr 6.
9
Chedoke-McMaster stroke assessment and modified Barthel Index self-assessment in patients with vascular brain damage.
Int J Rehabil Res. 2003 Jun;26(2):93-9. doi: 10.1097/00004356-200306000-00003.

引用本文的文献

6
Clinician's Commentary on Beyer et al.临床医生对拜尔等人的评论
Physiother Can. 2019 Spring;71(2):111-112. doi: 10.3138/ptc.2017-87-cc.
8
Clinician's Commentary on Dang et al.(1).临床医生对 Dang 等人(1)的评论。
Physiother Can. 2011 Summer;63(3):342-4. doi: 10.3138/physio.63.3.342. Epub 2011 Aug 10.

本文引用的文献

2
Motor recovery after stroke: a systematic review.中风后的运动恢复:一项系统综述。
Lancet Neurol. 2009 Aug;8(8):741-54. doi: 10.1016/S1474-4422(09)70150-4.
8
A methodological framework for assessing health indices.一种评估健康指数的方法框架。
J Chronic Dis. 1985;38(1):27-36. doi: 10.1016/0021-9681(85)90005-0.
9
Stroke outcome research.中风结局研究。
Stroke. 1986 May-Jun;17(3):358-60. doi: 10.1161/01.str.17.3.358.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验