Suppr超能文献

基于分布式特征表示的语义记忆、词汇检索和类别形成的综合神经模型。

An integrated neural model of semantic memory, lexical retrieval and category formation, based on a distributed feature representation.

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

出版信息

Cogn Neurodyn. 2011 Jun;5(2):183-207. doi: 10.1007/s11571-011-9154-0. Epub 2011 Mar 24.

Abstract

This work presents a connectionist model of the semantic-lexical system. Model assumes that the lexical and semantic aspects of language are memorized in two distinct stores, and are then linked together on the basis of previous experience, using physiological learning mechanisms. Particular characteristics of the model are: (1) the semantic aspects of an object are described by a collection of features, whose number may vary between objects. (2) Individual features are topologically organized to implement a similarity principle. (3) Gamma-band synchronization is used to segment different objects simultaneously. (4) The model is able to simulate the formation of categories, assuming that objects belong to the same category if they share some features. (5) Homosynaptic potentiation and homosynaptic depression are used within the semantic network, to create an asymmetric pattern of synapses; this allows a different role to be assigned to shared and distinctive features during object reconstruction. (6) Features which frequently occurred together, and the corresponding word-forms, become linked via reciprocal excitatory synapses. (7) Features in the semantic network tend to inhibit words not associated with them during the previous learning phase. Simulations show that, after learning, presentation of a cue can evoke the overall object and the corresponding word in the lexical area. Word presentation, in turn, activates the corresponding features in the sensory-motor areas, recreating the same conditions occurred during learning, according to a grounded cognition viewpoint. Several words and their conceptual description can coexist in the lexical-semantic system exploiting gamma-band time division. Schematic exempla are shown, to illustrate the possibility to distinguish between words representing a category, and words representing individual members and to evaluate the role of gamma-band synchronization in priming. Finally, the model is used to simulate patients with focalized lesions, assuming a damage of synaptic strength in specific feature areas. Results are critically discussed in view of future model extensions and application to real objects. The model represents an original effort to incorporate many basic ideas, found in recent conceptual theories, within a single quantitative scaffold.

摘要

这项工作提出了一个语义词汇系统的连接主义模型。该模型假设语言的词汇和语义方面存储在两个不同的存储库中,然后根据之前的经验,利用生理学习机制将它们联系起来。该模型的特点如下:(1) 对象的语义方面由一组特征描述,其数量可能因对象而异。(2) 单个特征在拓扑上组织,以实现相似性原则。(3) γ 波段同步用于同时分割不同的对象。(4) 该模型能够模拟类别形成,假设对象如果共享某些特征,则属于同一类别。(5) 在语义网络中使用同突触增强和同突触抑制,在对象重建过程中为共享和独特特征赋予不同的作用。(6) 经常一起出现的特征和相应的词形,通过相互兴奋性突触连接。(7) 在语义网络中的特征在之前的学习阶段倾向于抑制与它们不相关的词。模拟表明,在学习后,提示的呈现可以唤起词汇区域中的整体对象和相应的词。反过来,词的呈现激活语义网络中相应的特征,根据一种基于感知的认知观点,重新创建学习过程中发生的相同条件。几个词及其概念描述可以利用 γ 波段时间分割在词汇语义系统中同时存在。本文展示了一些示意性的例子,以说明区分代表一个类别的词和代表个体成员的词的可能性,并评估 γ 波段同步在启动中的作用。最后,该模型被用于模拟具有焦点病变的患者,假设在特定特征区域的突触强度受损。结果从未来模型扩展和应用于真实对象的角度进行了批判性讨论。该模型是将最近的概念理论中的许多基本思想纳入单一定量框架的原始尝试。

相似文献

2
A computational model of the lexical-semantic system based on a grounded cognition approach.
Front Psychol. 2010 Dec 8;1:221. doi: 10.3389/fpsyg.2010.00221. eCollection 2010.
3
A neural network model of semantic memory linking feature-based object representation and words.
Biosystems. 2009 Jun;96(3):195-205. doi: 10.1016/j.biosystems.2009.01.006. Epub 2009 Feb 11.
4
A neural network for learning the meaning of objects and words from a featural representation.
Neural Netw. 2015 Mar;63:234-53. doi: 10.1016/j.neunet.2014.11.009. Epub 2014 Dec 16.
6
A semantic model to study neural organization of language in bilingualism.
Comput Intell Neurosci. 2010;2010:350269. doi: 10.1155/2010/350269. Epub 2010 Mar 1.
7
A feature-based neurocomputational model of semantic memory.
Cogn Neurodyn. 2018 Dec;12(6):525-547. doi: 10.1007/s11571-018-9494-0. Epub 2018 Jul 7.
9
Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.
Biosystems. 2006 Sep;85(3):201-18. doi: 10.1016/j.biosystems.2006.01.005. Epub 2006 Apr 25.
10
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
J Neurosci. 2016 Sep 21;36(38):9763-9. doi: 10.1523/JNEUROSCI.4095-15.2016.

引用本文的文献

1
Is Competition the Default Configuration of Cross-Sensory Interactions?
Eur J Neurosci. 2025 Aug;62(4):e70233. doi: 10.1111/ejn.70233.
2
Design and Construction of University Book Layout Based on Text Image Preprocessing Algorithm in Education Metaverse Environment.
J Environ Public Health. 2022 Sep 25;2022:6219401. doi: 10.1155/2022/6219401. eCollection 2022.
3
A feature-based neurocomputational model of semantic memory.
Cogn Neurodyn. 2018 Dec;12(6):525-547. doi: 10.1007/s11571-018-9494-0. Epub 2018 Jul 7.
5
Analyzing text recognition from tactually evoked EEG.
Cogn Neurodyn. 2017 Dec;11(6):501-513. doi: 10.1007/s11571-017-9452-2. Epub 2017 Sep 6.
6
Modeling spatial-temporal operations with context-dependent associative memories.
Cogn Neurodyn. 2015 Oct;9(5):523-34. doi: 10.1007/s11571-015-9343-3. Epub 2015 May 17.
7
Dynamics of the semantic priming shift: behavioral experiments and cortical network model.
Cogn Neurodyn. 2012 Dec;6(6):467-83. doi: 10.1007/s11571-012-9206-0. Epub 2012 Jun 13.
8
Dissociation of category versus item priming in face processing: an event-related potential study.
Cogn Neurodyn. 2012 Apr;6(2):155-67. doi: 10.1007/s11571-011-9185-6. Epub 2011 Dec 11.

本文引用的文献

1
The similarity-in-topography principle: reconciling theories of conceptual deficits.
Cogn Neuropsychol. 2003 May 1;20(3):451-86. doi: 10.1080/02643290342000032.
2
The generation of rhythms within a cortical region: analysis of a neural mass model.
Neuroimage. 2010 Sep;52(3):1080-94. doi: 10.1016/j.neuroimage.2009.12.084. Epub 2010 Jan 4.
3
Embodied cognition and beyond: acting and sensing the body.
Neuropsychologia. 2010 Feb;48(3):763-73. doi: 10.1016/j.neuropsychologia.2009.10.029. Epub 2009 Nov 11.
4
A neural network model of semantic memory linking feature-based object representation and words.
Biosystems. 2009 Jun;96(3):195-205. doi: 10.1016/j.biosystems.2009.01.006. Epub 2009 Feb 11.
5
Distributed processing and temporal codes in neuronal networks.
Cogn Neurodyn. 2009 Sep;3(3):189-96. doi: 10.1007/s11571-009-9087-z. Epub 2009 Jun 28.
6
Characterizing the dynamic frequency structure of fast oscillations in the rodent hippocampus.
Front Integr Neurosci. 2009 Jun 10;3:11. doi: 10.3389/neuro.07.011.2009. eCollection 2009.
7
Prediction, sequences and the hippocampus.
Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1193-201. doi: 10.1098/rstb.2008.0316.
8
Semantic richness and the activation of concepts in semantic memory: evidence from event-related potentials.
Brain Res. 2009 Jul 28;1282:95-102. doi: 10.1016/j.brainres.2009.05.092. Epub 2009 Jun 6.
10
Towards dynamical system models of language-related brain potentials.
Cogn Neurodyn. 2008 Sep;2(3):229-55. doi: 10.1007/s11571-008-9041-5. Epub 2008 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验