Suppr超能文献

异模态皮层区域编码词义的感觉运动特征。

Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

作者信息

Fernandino Leonardo, Humphries Colin J, Conant Lisa L, Seidenberg Mark S, Binder Jeffrey R

机构信息

Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and

Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and.

出版信息

J Neurosci. 2016 Sep 21;36(38):9763-9. doi: 10.1523/JNEUROSCI.4095-15.2016.

Abstract

UNLABELLED

The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features.

SIGNIFICANCE STATEMENT

The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations.

摘要

未标注

以概念形式处理信息的能力是人类认知的一个基本方面,但对于这类信息在大脑中是如何编码的,我们却知之甚少。尽管感觉和运动皮层区域的作用一直是近期争论的焦点,但概念表征的神经影像学研究始终表明,存在一个异模态区域网络,该网络似乎总体上支持概念检索,而非与任何特定感觉运动内容相关的知识。我们对功能磁共振成像(fMRI)数据使用了预测性机器学习,以研究这样一个假设:这个“一般语义网络”(GSN)中的皮层区域编码源自基本感觉运动过程的多模态信息,可能作为分布式概念表征的汇聚-发散区发挥作用。一个基于与感觉运动体验直接相关的五个概念属性(声音、颜色、形状、可操作性和视觉运动)的编码模型,被用于预测在语义决策任务中与各个词汇概念相关的大脑激活模式。当分析仅限于GSN中的体素时,该模型能够显著高于随机水平地识别与各个具体概念相对应的激活模式。相比之下,一个基于单词形式的五个感知属性的模型表现处于随机水平。当分析仅限于参与书面单词形式感知分析的区域时,这种模式则相反。这些结果表明,参与语义处理的异模态区域编码有关概念不同感觉运动属性相对重要性的信息,可能是通过存储感觉和运动特征的特定组合来实现的。

意义声明

本研究使用单词语义的预测编码模型,从异模态皮层区域的神经活动中解码概念信息。该模型基于单词意义的五个感觉运动属性(颜色、形状、声音、视觉运动和可操作性),并编码每个属性对单词意义的相对重要性。这是首次证明参与语义处理的异模态区域能够仅基于感觉运动信息区分不同概念。这一发现表明,大脑将概念表征为感觉和运动表征的多模态组合。

相似文献

4
A Distributed Network for Multimodal Experiential Representation of Concepts.一种用于概念的多模式体验表示的分布式网络。
J Neurosci. 2022 Sep 14;42(37):7121-7130. doi: 10.1523/JNEUROSCI.1243-21.2022. Epub 2022 Aug 8.
6
A brain-based account of "basic-level" concepts.基于大脑的“基本层次”概念解释。
Neuroimage. 2017 Nov 1;161:196-205. doi: 10.1016/j.neuroimage.2017.08.049. Epub 2017 Aug 19.
7
Modulation of the semantic system by word imageability.词的可想象性对语义系统的调制
Neuroimage. 2005 Aug 1;27(1):188-200. doi: 10.1016/j.neuroimage.2005.04.012.
8
Modality-independent encoding of individual concepts in the left parietal cortex.左顶叶皮层中个体概念的模态无关编码。
Neuropsychologia. 2017 Oct;105:39-49. doi: 10.1016/j.neuropsychologia.2017.05.001. Epub 2017 May 3.

引用本文的文献

4
The concrete processing of Chinese action metaphors: an ERP study.汉语动作隐喻的具体加工:一项ERP研究。
Front Psychol. 2024 Apr 4;15:1362978. doi: 10.3389/fpsyg.2024.1362978. eCollection 2024.
5
How does the "default mode" network contribute to semantic cognition?“默认模式”网络如何促进语义认知?
Brain Lang. 2024 May;252:105405. doi: 10.1016/j.bandl.2024.105405. Epub 2024 Apr 4.
9
Rating norms should be calculated from cumulative link mixed effects models.评分规范应根据累积链接混合效应模型进行计算。
Behav Res Methods. 2023 Aug;55(5):2175-2196. doi: 10.3758/s13428-022-01814-7. Epub 2022 Sep 14.
10
At the Neural Intersection Between Language and Emotion.在语言与情感的神经交叉点上。
Affect Sci. 2021 Mar 20;2(2):207-220. doi: 10.1007/s42761-021-00032-2. eCollection 2021 Jun.

本文引用的文献

6
Chromaticity of color perception and object color knowledge.颜色感知的色度和物体颜色知识。
Neuropsychologia. 2012 Jan;50(2):327-33. doi: 10.1016/j.neuropsychologia.2011.12.003. Epub 2011 Dec 14.
9
Mapping the structural core of human cerebral cortex.绘制人类大脑皮层的结构核心。
PLoS Biol. 2008 Jul 1;6(7):e159. doi: 10.1371/journal.pbio.0060159.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验