Biomicrofluidics. 2012 Jun;6(2):22004-2200418. doi: 10.1063/1.3693605. Epub 2012 Apr 6.
Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row ("dripping"), to multiple rows ("alternating"), to densely packed bubbles ("bamboo" and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters.
泡沫具有许多有用的应用,这些应用源于其内部气泡的结构和尺寸分布。微流控技术允许快速形成均匀的气泡,其中气泡的大小和体积分数是输入气压、液体流速和器件几何形状的函数。形成后,微通道限制了气泡并决定了最终的泡沫结构。泡沫结构可以从单排(“滴落”)到多排(“交替”)到密集排列的气泡(“竹子”和干泡沫)不等。我们表明,每种配置都出现在由气泡体积和体积分数定义的操作空间的不同区域中。我们使用几何论证描述了这些区域之间的边界,并表明边界是通道纵横比的函数。我们将这些几何论证与使用流动聚焦、T 型接头和共流设计在含有溶解表面活性剂的油中生成稳定氮气气泡和在含有溶解表面活性剂的水中生成稳定液滴的实验中观察到的泡沫结构进行了比较。这项工作的结果是一组设计参数,可用于根据器件几何形状和实验控制参数来实现所需的泡沫结构。