Suppr超能文献

矩形微流道中气泡的惯性操控。

Inertial manipulation of bubbles in rectangular microfluidic channels.

机构信息

Optics Laboratory, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

出版信息

Lab Chip. 2018 Mar 27;18(7):1035-1046. doi: 10.1039/c7lc01283g.

Abstract

Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.

摘要

惯性微流控是一个活跃的研究领域,涉及悬浮颗粒在微流中的横向定位。到目前为止,大多数研究都集中在刚性颗粒的行为上,以便为微流控应用(如分类和过滤)提供指导。尽管变形颗粒(如气泡和液滴)在多相微流中很重要,但在研究中考虑的却较少。本文通过调整作用在气泡上的力的平衡,展示了在矩形和方形微通道中流动的气泡的轨迹可以被控制。采用 T 形几何结构将气泡引入微通道,并在一系列雷诺数(1 < Re < 40)和毛细管数(0.1 < Ca < 1)范围内分析其横向平衡位置。结果发现,雷诺数(Re)、毛细管数(Ca)、气泡直径(D[combining macron])和通道纵横比是影响这种现象的重要参数。例如,在高 Re 时,流动将气泡推向壁面,而大 Ca 或 D[combining macron]则将气泡推向中心。此外,在浅通道中,纵横比大于 1 时,气泡会向较窄的侧壁移动。这项研究的一个重要成果是,矩形通道中气泡的平衡位置与固体颗粒不同。实验观察与进行的数值模拟吻合良好,为层流中气泡的动力学提供了深入了解,这可以用于基于流动的多相流动反应器的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验