Suppr超能文献

线虫解毒基因调控因子 SKN-1 的独特结构和调控:对理解和控制药物耐药性的启示。

Unique structure and regulation of the nematode detoxification gene regulator, SKN-1: implications to understanding and controlling drug resistance.

机构信息

Department of Biology, University of Florida, Gainesville, FL 32611, USA.

出版信息

Drug Metab Rev. 2012 Aug;44(3):209-23. doi: 10.3109/03602532.2012.684799. Epub 2012 Jun 4.

Abstract

Nematodes parasitize an alarming number of people and agricultural animals globally and cause debilitating morbidity and mortality. Anthelmintics have been the primary tools used to control parasitic nematodes for the past several decades, but drug resistance is becoming a major obstacle. Xenobiotic detoxification pathways defend against drugs and other foreign chemicals in diverse organisms, and evidence is accumulating that they play a role in mediating resistance to anthelmintics in nematodes. Related antioxidation pathways may also provide filarial parasites with protection against host free-radical-mediated immune responses. Upstream regulatory pathways have received almost no attention in nematode parasites, despite their potential to coregulate multiple detoxification and antioxidation genes. The nuclear eurythroid 2-related factor 2 (NRF2) transcription factor mediates inducible detoxification and antioxidation defenses in mammals, and recent studies have demonstrated that it promotes multidrug resistance in some human tumors. Recent studies in the free-living model nematode, Caenorhabditis elegans, have defined the homologous transcription factor, SKN-1, as a master regulator of detoxification and antioxidation genes. Despite similar functions, SKN-1 and NRF2 have important differences in structure and regulatory pathways. Protein alignment and phylogenetic analyses indicate that these differences are shared among many nematodes, making SKN-1 a candidate for specifically targeting nematode detoxification and antioxidation.

摘要

寄生虫全球范围内寄生了大量的人和农业动物,导致严重的发病率和死亡率。在过去几十年中,抗寄生虫药物一直是控制寄生线虫的主要手段,但药物耐药性正成为一个主要障碍。外来生物解毒途径可抵御各种生物中的药物和其他外来化学物质,有证据表明,它们在介导线虫对抗寄生虫药物的耐药性方面发挥了作用。相关的抗氧化途径也可能为丝虫寄生虫提供针对宿主自由基介导的免疫反应的保护。尽管上游调控途径有可能共同调控多种解毒和抗氧化基因,但在线虫寄生虫中几乎没有受到关注。核红细胞 2 相关因子 2 (NRF2) 转录因子介导哺乳动物的诱导解毒和抗氧化防御,最近的研究表明,它促进了一些人类肿瘤的多药耐药性。在自由生活模式线虫秀丽隐杆线虫中的最近研究中,将同源转录因子 SKN-1 定义为解毒和抗氧化基因的主要调节剂。尽管具有相似的功能,但 SKN-1 和 NRF2 在结构和调控途径上存在重要差异。蛋白质比对和系统发育分析表明,这些差异在许多线虫中是共享的,这使得 SKN-1 成为针对线虫解毒和抗氧化的候选药物。

相似文献

2
3
The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans.
Int J Parasitol Drugs Drug Resist. 2018 Aug;8(2):312-319. doi: 10.1016/j.ijpddr.2018.04.006. Epub 2018 Apr 25.
4
The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans.
Aging Cell. 2014 Feb;13(1):70-9. doi: 10.1111/acel.12154. Epub 2013 Sep 18.
5
A new class of anthelmintics effective against drug-resistant nematodes.
Nature. 2008 Mar 13;452(7184):176-80. doi: 10.1038/nature06722.
6
Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf.
Aging Cell. 2009 Sep;8(5):524-41. doi: 10.1111/j.1474-9726.2009.00501.x. Epub 2009 Jul 3.
7
Host cell factor 1 inhibits SKN-1 to modulate oxidative stress responses in Caenorhabditis elegans.
Aging Cell. 2012 Aug;11(4):717-21. doi: 10.1111/j.1474-9726.2012.00831.x. Epub 2012 Jun 4.
10
The metabolic contribution of SKN-1/Nrf2 to the lifespan of Caenorhabditis elegans.
Metabolomics. 2023 Jun 8;19(6):58. doi: 10.1007/s11306-023-02022-w.

引用本文的文献

3
Improvement of Locomotion Caused by subsp. in the Model Organism .
Nutrients. 2023 Oct 23;15(20):4482. doi: 10.3390/nu15204482.
4
as a Model for the Effects of Phytochemicals on Mitochondria and Aging.
Biomolecules. 2022 Oct 24;12(11):1550. doi: 10.3390/biom12111550.
5
Prolonged Lifespan, Improved Perception, and Enhanced Host Defense of Caenorhabditis elegans by Lactococcus cremoris subsp. .
Microbiol Spectr. 2022 Jun 29;10(3):e0045421. doi: 10.1128/spectrum.00454-21. Epub 2022 May 16.
6
The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles.
PLoS One. 2022 Apr 7;17(4):e0266164. doi: 10.1371/journal.pone.0266164. eCollection 2022.
8
9
The glutathione system and the related thiol network in Caenorhabditis elegans.
Redox Biol. 2019 Jun;24:101171. doi: 10.1016/j.redox.2019.101171. Epub 2019 Mar 16.
10
Glucose negatively affects Nrf2/SKN-1-mediated innate immunity in .
Aging (Albany NY). 2018 Nov 15;10(11):3089-3103. doi: 10.18632/aging.101610.

本文引用的文献

1
An inconvenient truth: global worming and anthelmintic resistance.
Vet Parasitol. 2012 May 4;186(1-2):70-8. doi: 10.1016/j.vetpar.2011.11.048. Epub 2011 Nov 20.
3
Transcriptional regulation of xenobiotic detoxification in Drosophila.
Genes Dev. 2011 Sep 1;25(17):1796-806. doi: 10.1101/gad.17280911.
4
5
ABC transporters influence sensitivity of Brugia malayi to moxidectin and have potential roles in drug resistance.
Exp Parasitol. 2011 Oct;129(2):137-44. doi: 10.1016/j.exppara.2011.06.018. Epub 2011 Jul 13.
6
Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle.
Annu Rev Genet. 2011;45:1-20. doi: 10.1146/annurev-genet-110410-132417. Epub 2011 Jun 29.
7
8
The draft genome of the parasitic nematode Trichinella spiralis.
Nat Genet. 2011 Mar;43(3):228-35. doi: 10.1038/ng.769. Epub 2011 Feb 20.
10
Oesophagostomum dentatum: effect of glutathione S-transferase (GST) inhibitors on GST activity and larval development.
Exp Parasitol. 2011 Apr;127(4):762-7. doi: 10.1016/j.exppara.2011.01.005. Epub 2011 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验