Suppr超能文献

一氧化氮——耳蜗功能和听力障碍中的多功能关键分子。

Nitric oxide--a versatile key player in cochlear function and hearing disorders.

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of The Johannes Gutenberg-University Mainz, Germany.

出版信息

Nitric Oxide. 2012 Aug 15;27(2):106-16. doi: 10.1016/j.niox.2012.05.005. Epub 2012 Jun 1.

Abstract

Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.

摘要

一氧化氮(NO)是一种信号分子,通常可以通过三种一氧化氮合酶(NOS)形成。其中两种,内皮型一氧化氮合酶(eNOS)和神经元型一氧化氮合酶(nNOS),是钙/钙调蛋白依赖性的,在许多细胞类型中持续表达。这两种同工酶都存在于脊椎动物耳蜗中。诱导型一氧化氮合酶(iNOS)不依赖于钙,在未受刺激的耳蜗中通常无法检测到。在内耳中,与其他组织一样,NO 被鉴定为一种多功能分子,参与多种过程,如神经传递和神经调节。此外,越来越多的证据表明,NO 依赖的细胞保护或细胞破坏过程似乎取决于局部耳蜗 NO 浓度的变化。这些变化可以发生在细胞水平或特定的细胞群体中,导致听力器官内的 NO 失衡。这种功能障碍可导致听力损失甚至耳聋。在耳蜗功能障碍的情况下,调节系统(如缝隙连接系统、血管或突触区域)可能会被改变的 NO 水平暂时或永久地影响。这篇综述讨论了 NO 可能导致不同形式听力障碍的潜在细胞机制。评估了降低 NO 的方法,并讨论了从实验动物模型获得的结果向人类药物治疗的转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验