Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA.
J Chem Phys. 2012 May 28;136(20):204113. doi: 10.1063/1.4721638.
We present an identity for an unbiased estimate of a general statistical distribution. The identity computes the distribution density from dividing a histogram sum over a local window by a correction factor from a mean-force integral, and the mean force can be evaluated as a configuration average. We show that the optimal window size is roughly the inverse of the local mean-force fluctuation. The new identity offers a more robust and precise estimate than a previous one by Adib and Jarzynski [J. Chem. Phys. 122, 014114 (2005)]. It also allows a straightforward generalization to an arbitrary ensemble and a joint distribution of multiple variables. Particularly we derive a mean-force enhanced version of the weighted histogram analysis method. The method can be used to improve distributions computed from molecular simulations. We illustrate the use in computing a potential energy distribution, a volume distribution in a constant-pressure ensemble, a radial distribution function, and a joint distribution of amino acid backbone dihedral angles.
我们提出了一种用于一般统计分布无偏估计的身份。该身份通过将局部窗口内的直方图和均值力积分的校正因子相除来计算分布密度,而平均力可以作为构型平均值来评估。我们表明,最优窗口大小大致为局部均值力波动的倒数。与 Adib 和 Jarzynski [J. Chem. Phys. 122, 014114 (2005)] 之前的身份相比,新身份提供了更稳健和精确的估计。它还允许直接推广到任意系综和多个变量的联合分布。特别是,我们推导出了一种均值力增强的加权直方图分析方法。该方法可用于改进从分子模拟计算得到的分布。我们说明了如何在计算势能分布、恒压系综中的体积分布、径向分布函数和氨基酸骨架二面角联合分布中使用该方法。