Department of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
J Am Chem Soc. 2012 Jul 4;134(26):11012-25. doi: 10.1021/ja3041724. Epub 2012 Jun 21.
The first theoretical study on the effects of ligands on the mechanism, reactivities, and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions of vinylcyclopropanes (VCPs) and alkynes has been performed using density functional theory (DFT) calculations. Highly efficient and selective intermolecular (5 + 2) cycloadditions of VCPs and alkynes have been achieved recently using two novel rhodium catalysts, Rh(dnCOT)SbF(6)(-) and Rh(COD)SbF(6)(-), which provide superior reactivities and regioselectivities relative to that of the previously reported Rh(CO)(2)Cl catalyst. Computationally, the high reactivities of the dnCOT and COD ligands are attributed to the steric repulsions that destabilize the Rh-product complex, the catalyst resting state in the catalytic cycle. The regioselectivities of reactions with various alkynes and different Rh catalysts are investigated, and a predictive model is provided that describes substrate-substrate and ligand-substrate steric repulsions, electronic effects, and noncovalent π/π and C-H/π interactions. In the reactions with dnCOT or COD ligands, the first new C-C bond is formed proximal to the bulky substituent on the alkyne to avoid ligand-substrate steric repulsions. This regioselectivity is reversed either by employing the smaller Rh(CO)(2)Cl catalyst to diminish the ligand-substrate repulsions or by using aryl alkynes, for which the ligand-substrate interactions become stabilizing due to π/π and C-H/π dispersion interactions. Electron-withdrawing groups on the alkyne prefer to be proximal to the first new C-C bond to maximize metal-substrate back-bonding interactions. These steric, electronic, and dispersion effects can all be utilized in designing new ligands to provide regiochemical control over product formation with high selectivities. The computational studies reveal the potential of employing the dnCOT family of ligands to achieve unique regiochemical control due to the steric influences and dispersion interactions associated with the rigid aryl substituents on the ligand.
使用密度泛函理论(DFT)计算,首次对配体对 Rh(I)催化的乙烯基环丙烷(VCP)和炔烃的(5 + 2)环加成反应的机理、反应活性和区域选择性的影响进行了理论研究。最近,使用两种新型铑催化剂[Rh(dnCOT)](+)SbF(6)(-)和[Rh(COD)](+)SbF(6)(-),实现了 VCP 和炔烃的高效和选择性的分子间(5 + 2)环加成。与先前报道的[Rh(CO)(2)Cl](2)催化剂相比,这两种新型铑催化剂提供了更高的反应活性和区域选择性。计算上,dnCOT 和 COD 配体的高反应活性归因于空间位阻,其使 Rh-产物配合物(催化循环中的催化剂休息状态)不稳定。研究了各种炔烃和不同 Rh 催化剂的反应的区域选择性,并提供了一个描述底物-底物和配体-底物空间位阻、电子效应以及非共价π/π和 C-H/π相互作用的预测模型。在与 dnCOT 或 COD 配体的反应中,第一个新的 C-C 键形成在炔烃的大取代基附近,以避免配体-底物的空间位阻。这种区域选择性可以通过使用较小的[Rh(CO)(2)Cl](2)催化剂来减小配体-底物的排斥作用,或者通过使用芳基炔烃来反转,对于芳基炔烃,由于π/π和 C-H/π分散相互作用,配体-底物相互作用变得稳定。炔烃上的吸电子基团倾向于靠近第一个新的 C-C 键,以最大限度地增加金属-底物的反向键合相互作用。这些空间位阻、电子和分散效应都可用于设计新的配体,以提供具有高选择性的产物形成的区域化学控制。计算研究表明,由于配体上刚性芳基取代基的空间影响和分散相互作用,使用 dnCOT 家族的配体有可能实现独特的区域化学控制。