Ke Xiao-Na, Schienebeck Casi M, Zhou Chen-Chen, Xu Xiufang, Tang Weiping
Department of Chemistry, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, WI 53705-2222.
Chin Chem Lett. 2015 Jun;26(6):730-734. doi: 10.1016/j.cclet.2015.03.016. Epub 2015 Mar 27.
The first theoretical study on the mechanism of [RhCl(CO)]-catalyzed [5 + 1] cycloadditions of 3-acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich -dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.
利用密度泛函理论(DFT)计算对[RhCl(CO)]催化3-酰氧基-1,4-烯炔(ACE)与CO的[5 + 1]环加成反应机理进行了首次理论研究。考察了酯对该反应活性的影响。计算结果表明,优选的催化循环包括1,2-酰氧基迁移、CO插入、还原消除以形成乙烯酮中间体、6π电子环化以及芳构化以得到间苯二酚产物等连续步骤。发现1,2-酰氧基迁移是催化循环的速率决定步骤。富电子的 -二甲基氨基苯甲酸酯底物促进1,2-酰氧基迁移,并通过稳定氧环过渡态中积累的正电荷显著提高反应活性。