Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut 06030-1605, USA.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2012 Apr;113(4):549-58.e1. doi: 10.1016/j.oooo.2011.10.002.
The aim of this study was to demonstrate that histogram analysis and mathematical modeling of digital panoramic images (DPIs) processed using recursive hierarchic segmentation (RHSEG) discriminates normal, osteopenic, and osteoporotic cancellous bone.
Forty-seven DPIs of postmenopausal women were grouped into normal, osteopenic, and osteoporotic; dual-energy x-ray absorptiometry was the reference standard. RHSEG of the mandibular angle and canine/premolar trabecular regions of interest was performed. After histogram and histogram bin analysis and generation of relative intensity functions, generalized linear mixed model analysis was used to model the data and likelihood ratio testing used to assess group differences.
Histogram analyses discriminated among the groups. Receiver operating characteristic analysis of the canine/premolar data yielded area-under-the-curve accuracies of 0.78 for osteoporosis and 0.74 for osteopenia. Discrimination of osteoporosis required cubic analysis, discrimination of osteopenia required quartic analysis, and neither model alone discriminated among all groups.
Analyses and mathematical modeling of mandibular trabecular bone on RHSEG-processed DPIs discriminated normal, osteoporotic, and osteopenic patients.
本研究旨在证明使用递归层次分割(RHSEG)处理的数字全景图像(DPIs)的直方图分析和数学建模可区分正常、骨质疏松和骨质疏松性松质骨。
将 47 名绝经后妇女的 DPIs 分为正常、骨质疏松和骨质疏松组;双能 X 射线吸收法是参考标准。对下颌角和犬/前磨牙感兴趣区进行 RHSEG。在进行直方图和直方图-bin 分析以及生成相对强度函数后,使用广义线性混合模型分析对数据进行建模,并使用似然比检验评估组间差异。
直方图分析可区分各组。犬/前磨牙数据的接收者操作特征分析得出骨质疏松症的曲线下面积准确性为 0.78,骨质疏松症为 0.74。骨质疏松症的鉴别需要三次分析,骨质疏松症的鉴别需要四次分析,而单独的任何一种模型都无法区分所有组。
对 RHSEG 处理的 DPIs 下颌骨小梁骨进行的分析和数学建模可区分正常、骨质疏松和骨质疏松症患者。