Suppr超能文献

将用于自然图像的SAM2模型适配到牙科全景X光图像中的牙齿分割

Adapting SAM2 Model from Natural Images for Tooth Segmentation in Dental Panoramic X-Ray Images.

作者信息

Li Zifeng, Tang Wenzhong, Gao Shijun, Wang Yanyang, Wang Shuai

机构信息

School of Aeronautic Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China.

出版信息

Entropy (Basel). 2024 Dec 6;26(12):1059. doi: 10.3390/e26121059.

Abstract

Dental panoramic X-ray imaging, due to its high cost-effectiveness and low radiation dose, has become a widely used diagnostic tool in dentistry. Accurate tooth segmentation is crucial for lesion analysis and treatment planning, helping dentists to quickly and precisely assess the condition of teeth. However, dental X-ray images often suffer from noise, low contrast, and overlapping anatomical structures, coupled with limited available datasets, leading traditional deep learning models to experience overfitting, which affects generalization ability. In addition, high-precision deep models typically require significant computational resources for inference, making deployment in real-world applications challenging. To address these challenges, this paper proposes a tooth segmentation method based on the pre-trained SAM2 model. We employ adapter modules to fine-tune the SAM2 model and introduce ScConv modules and gated attention mechanisms to enhance the model's semantic understanding and multi-scale feature extraction capabilities for medical images. In terms of efficiency, we utilize knowledge distillation, using the fine-tuned SAM2 model as the teacher model for distilling knowledge to a smaller model named LightUNet. Experimental results on the UFBA-UESC dataset show that, in terms of performance, our model significantly outperforms the traditional UNet model in multiple metrics such as IoU, effectively improving segmentation accuracy and model robustness, particularly with limited sample datasets. In terms of efficiency, LightUNet achieves comparable performance to UNet, but with only 1.6% of its parameters and 24.0% of the inference time, demonstrating its feasibility for deployment on edge devices.

摘要

牙科全景X射线成像因其高性价比和低辐射剂量,已成为牙科领域广泛使用的诊断工具。准确的牙齿分割对于病变分析和治疗计划至关重要,有助于牙医快速、精确地评估牙齿状况。然而,牙科X射线图像常常存在噪声、对比度低以及解剖结构重叠的问题,再加上可用数据集有限,导致传统深度学习模型出现过拟合,影响泛化能力。此外,高精度深度模型通常需要大量计算资源进行推理,这使得在实际应用中的部署具有挑战性。为应对这些挑战,本文提出一种基于预训练SAM2模型的牙齿分割方法。我们采用适配器模块对SAM2模型进行微调,并引入ScConv模块和门控注意力机制,以增强模型对医学图像的语义理解和多尺度特征提取能力。在效率方面,我们利用知识蒸馏,将微调后的SAM2模型作为教师模型,将知识蒸馏到一个名为LightUNet的较小模型中。在UFBA - UESC数据集上的实验结果表明,在性能方面,我们的模型在交并比等多个指标上显著优于传统的UNet模型,有效提高了分割精度和模型鲁棒性,特别是在样本数据集有限的情况下。在效率方面,LightUNet实现了与UNet相当的性能,但参数仅为UNet的1.6%,推理时间仅为24.0%,证明了其在边缘设备上部署的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f72c/11675754/ef50109b36d1/entropy-26-01059-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验