Biomicrofluidics. 2012 Jun;6(2):24121-2412113. doi: 10.1063/1.4718721. Epub 2012 May 16.
Cell migration is involved in physiological processes such as wound healing, host defense, and cancer metastasis. The movement of various cell types can be directed by chemical gradients (i.e., chemotaxis). In addition to chemotaxis, many cell types can respond to direct current electric fields (dcEF) by migrating to either the cathode or the anode of the field (i.e., electrotaxis). In tissues, physiological chemical gradients and dcEF can potentially co-exist and the two guiding mechanisms may direct cell migration in a coordinated manner. Recently, microfluidic devices that can precisely configure chemical gradients or dcEF have been increasingly developed and used for chemotaxis and electrotaxis studies. However, a microfluidic device that can configure controlled co-existing chemical gradients and dcEF that would allow quantitative cell migration analysis in complex electrochemical guiding environments is not available. In this study, we developed a polydimethylsiloxane-based microfluidic device that can generate better controlled single or co-existing chemical gradients and dcEF. Using this device, we showed chemotactic migration of T cells toward a chemokine CCL19 gradient or electrotactic migration toward the cathode of an applied dcEF. Furthermore, T cells migrated more strongly toward the cathode of a dcEF in the presence of a competing CCL19 gradient, suggesting the higher electrotactic attraction. Taken together, the developed microfluidic device offers a new experimental tool for studying chemical and electrical guidance for cell migration, and our current results with T cells provide interesting new insights of immune cell migration in complex guiding environments.
细胞迁移参与生理过程,如伤口愈合、宿主防御和癌症转移。各种细胞类型的运动可以通过化学梯度(即趋化性)来引导。除了趋化性,许多细胞类型可以对直流电场(dcEF)做出反应,向电场的阴极或阳极迁移(即电趋性)。在组织中,生理化学梯度和 dcEF 可能同时存在,这两种导向机制可能以协调的方式指导细胞迁移。最近,能够精确配置化学梯度或 dcEF 的微流控装置越来越多地被开发和用于趋化性和电趋性研究。然而,还没有一种微流控装置能够配置受控的共存化学梯度和 dcEF,以在复杂的电化学导向环境中进行定量细胞迁移分析。在这项研究中,我们开发了一种基于聚二甲基硅氧烷的微流控装置,能够更好地控制单一或共存的化学梯度和 dcEF。使用该装置,我们展示了 T 细胞向趋化因子 CCL19 梯度的趋化性迁移或向施加的 dcEF 阴极的电趋性迁移。此外,在存在竞争性 CCL19 梯度的情况下,T 细胞向 dcEF 的阴极迁移更强,这表明电趋性吸引力更高。总之,所开发的微流控装置为研究细胞迁移的化学和电导向提供了一种新的实验工具,我们目前用 T 细胞得到的结果为复杂导向环境中免疫细胞迁移提供了有趣的新见解。