Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire 1000, CEP 50740-540, Recife, Brazil.
Phys Med Biol. 2012 Jun 21;57(12):3995-4021. doi: 10.1088/0031-9155/57/12/3995.
Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic–periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.
两种使用人体骨骼μCT 图像的骨骼剂量测定方法最近已经开发出来:一种是美国佛罗里达大学(UF)研究人员提出的成对图像辐射传输(PIRT)模型,另一种是巴西联邦伯南布哥大学研究人员开发的系统-周期性簇(SPC)方法。这两种方法都使用骨骼小梁(TB)的μCT 图像来模拟含有骨髓腔的海绵状区域,这些骨髓腔被分割成活跃骨髓(AM)、小梁非活跃骨髓和骨内膜(BE)的软组织体积,骨内膜是所有 TB 表面和 TB 旁边皮质骨表面以及骨髓腔内部的 50μm 厚的骨髓层。就吸收剂量而言,AM 和 BE 是诱导白血病和骨癌的敏感软组织。这两种方法主要区别在于蒙特卡罗计算中使用的骨骼部位数量和μCT 图像的大小,它们应用不同的方法来模拟位于骨骼外部的辐射源的暴露。PIRT 方法在孤立的人体骨骼中计算剂量学量,而 SPC 方法则使用嵌入在包含所有相关器官和软组织的体模中的人体骨骼。因此,SPC 方法可以在一步计算中从集中在器官中的放射性核素或位于人体外部的辐射源发出的粒子中计算 AM 和 BE 的吸收剂量。为了允许使用 PIRT 方法对 AM 和 BE 的吸收剂量进行类似的计算,已经根据骨骼组织中各向同性发射的电子的吸收分数(AFs)开发了所谓的剂量响应函数(DRFs)。DRFs 可用于将同质海绵状区域中的光子通量转换为 AM 和 BE 的吸收剂量。本文将比较使用 SPC 和 PIRT 方法计算的骨骼组织中发射电子的 AM 和 BE 的能量 AFs,以及使用 PIRT 基于的 DRFs 和 SPC 方法计算的 AM 和 BE 的吸收剂量和 AFs。如果正确考虑到两种模型之间的差异,两种骨骼剂量测定方法的计算结果吻合良好。此外,将使用更大的 TB μCT 图像更新 SPC 方法。