Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
J Physiol. 2012 Aug 15;590(16):3953-64. doi: 10.1113/jphysiol.2012.235820. Epub 2012 Jun 6.
Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.
先前的研究表明,毒蕈碱受体的激活可以调节谷氨酸能传递。M 型钾通道介导了海马中毒蕈碱激活的作用,并且有人提出它们可以调节谷氨酸能突触传递。我们测试了 M1 毒蕈碱受体的激活是否通过抑制存在于 Schaffer 侧支轴突和末梢中的 M 型钾通道来增强谷氨酸能突触传递。从 CA1 锥体神经元记录微小兴奋性突触后电流(mEPSC)。M1 受体激动剂 NcN-A-343 增加了 mEPSC 的频率,但没有改变其幅度。M 型通道阻滞剂 XE991 及其类似物 linopirdine 也增加了 mEPSC 的频率。打开 M 型通道的 flupirtine 则具有相反的作用。在无钙的外部介质中,XE991 不会增强 mEPSC 的频率。阻断 P/Q-和 N-型钙通道可消除 XE991 对 mEPSC 的影响。这些数据表明,M 型通道的抑制增加了 CA1 锥体神经元中钙依赖性谷氨酸的释放。使用电流钳记录研究了这些药物对 CA3 锥体神经元膜电位的影响;M1 受体的激活和 M 型通道的阻断使神经元去极化并增加爆发性放电。McN-A-343 和 XE991 的应用增加了 CA3 神经元的输入电阻;这些作用与 M 型通道的关闭一致。毒蕈碱激活抑制 CA3 锥体神经元及其传出神经——Schaffer 侧支的 M 型通道,这导致去极化、激活电压门控钙通道,最终增加细胞内钙浓度以增加 CA1 锥体神经元上谷氨酸的释放。