Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK; Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.
Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
Neuroscience. 2022 May 1;489:69-83. doi: 10.1016/j.neuroscience.2021.11.014. Epub 2021 Nov 12.
Acetylcholine has been proposed to facilitate the formation of memory ensembles within the hippocampal CA3 network, by enhancing plasticity at CA3-CA3 recurrent synapses. Regenerative NMDA receptor (NMDAR) activation in CA3 neuron dendrites (NMDA spikes) increase synaptic Ca influx and can trigger this synaptic plasticity. Acetylcholine inhibits potassium channels which enhances dendritic excitability and therefore could facilitate NMDA spike generation. Here, we investigate NMDAR-mediated nonlinear synaptic integration in stratum radiatum (SR) and stratum lacunosum moleculare (SLM) dendrites in a reconstructed CA3 neuron computational model and study the effect of cholinergic inhibition of potassium conductances on this nonlinearity. We found that distal SLM dendrites, with a higher input resistance, had a lower threshold for NMDA spike generation compared to SR dendrites. Simulating acetylcholine by blocking potassium channels (M-type, A-type, Ca-activated, and inwardly-rectifying) increased dendritic excitability and reduced the number of synapses required to generate NMDA spikes, particularly in the SR dendrites. The magnitude of this effect was heterogeneous across different dendritic branches within the same neuron. These results predict that acetylcholine facilitates dendritic integration and NMDA spike generation in selected CA3 dendrites which could strengthen connections between specific CA3 neurons to form memory ensembles.
乙酰胆碱被认为通过增强 CA3-CA3 复发性突触的可塑性,促进海马 CA3 网络中记忆集合的形成。CA3 神经元树突中的再生 NMDA 受体(NMDAR)激活(NMDAR 棘波)增加突触 Ca 内流,并可以触发这种突触可塑性。乙酰胆碱抑制钾通道,增强树突兴奋性,因此可以促进 NMDA 棘波的产生。在这里,我们在重建的 CA3 神经元计算模型中研究了层状辐射(SR)和层状空泡状分子(SLM)树突中的 NMDAR 介导的非线性突触整合,并研究了胆碱能抑制钾电导对这种非线性的影响。我们发现,与 SR 树突相比,具有更高输入电阻的远端 SLM 树突产生 NMDA 棘波的阈值较低。通过阻断钾通道(M 型、A 型、Ca 激活型和内向整流型)模拟乙酰胆碱会增加树突兴奋性,并减少产生 NMDA 棘波所需的突触数量,特别是在 SR 树突中。这种效应的大小在同一神经元内的不同树突分支之间存在异质性。这些结果表明,乙酰胆碱促进了特定 CA3 树突中的树突整合和 NMDA 棘波的产生,这可能会增强特定 CA3 神经元之间的连接,从而形成记忆集合。