Departments of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India.
Pharmacogenomics. 2012 Jun;13(8):869-78. doi: 10.2217/pgs.12.62.
To optimize warfarin dose in patients at risk for thrombotic events, we have recently developed a pharmacogenomic algorithm, which explained 44.9% of the variability in warfarin dose requirements using age, gender, BMI, vitamin K intake, CYP2C9 (*2 and *3) and VKORC1 (*3, *4 and -1639 G>A) as predictors. The aim of the current study is to develop an expanded genetic model that can explain greater percentage of warfarin variability and that has clinical validity.
PATIENTS & METHODS: CYP2C9*8, CYP4F2 V433M, GGCX G8016A and thyroid status were added to an expanded genetic model (n = 243).
The expanded genetic model explained 61% of the variability in warfarin dose requirements, has a prediction accuracy of ±11 mg/week and can differentiate warfarin sensitive and warfarin resistant groups efficiently (areas under receiver operating characteristic curves: 0.93 and 0.998, respectively; p < 0.0001). Higher percentage of International Normalized Ratios in therapeutic range (52.68 ± 4.21 vs 43.80 ± 2.27; p = 0.04) and prolonged time in therapeutic range (61.74 ± 3.18 vs 47.75 ± 5.77; p = 0.03) were observed in subjects with a prediction accuracy of <1 mg/day compared with subjects with prediction accuracy >1 mg/day. In the warfarin-resistant group, primary hypothyroidism was found to induce more resistance while in the warfarin-sensitive group, hyperthyroidism was found to increase sensitivity.
The expanded genetic model explains greater variability in warfarin dose requirements and it prolongs time in therapeutic range and minimizes out-of-range International Normalized Ratios. Thyroid status also influences warfarin dose adjustments.
为了优化有血栓形成风险的患者的华法林剂量,我们最近开发了一种药物基因组学算法,该算法使用年龄、性别、BMI、维生素 K 摄入量、CYP2C9(*2 和 *3)和 VKORC1(*3、*4 和-1639 G>A)作为预测因子,解释了 44.9%的华法林剂量需求的变异性。本研究的目的是开发一种能够解释更大比例的华法林变异性且具有临床有效性的扩展遗传模型。
在扩展的遗传模型中添加 CYP2C9*8、CYP4F2 V433M、GGCX G8016A 和甲状腺状态(n=243)。
扩展的遗传模型解释了华法林剂量需求变异性的 61%,具有±11 毫克/周的预测准确性,可以有效地将华法林敏感组和华法林抵抗组区分开(受试者工作特征曲线下面积分别为 0.93 和 0.998,p<0.0001)。治疗范围内的国际标准化比值更高(52.68±4.21 比 43.80±2.27,p=0.04),治疗范围内的时间延长(61.74±3.18 比 47.75±5.77,p=0.03),在预测准确性<1 毫克/天的患者中观察到,而在预测准确性>1 毫克/天的患者中观察到。在华法林抵抗组中,原发性甲状腺功能减退症被发现诱导更多的抵抗,而在华法林敏感组中,甲状腺功能亢进症被发现增加敏感性。
扩展的遗传模型解释了华法林剂量需求变异性更大,延长了治疗范围的时间,最小化了治疗范围外的国际标准化比值。甲状腺状态也影响华法林剂量调整。