Suppr超能文献

朗根斯基尔分期在晚发性胫骨内翻中具有良好的预后价值吗?

Does Langenskiold staging have a good prognostic value in late onset tibia vara?

机构信息

Damanhour National Medical Institute, Ali El-Garim St,Bohera state, Rasheed, Egypt.

出版信息

J Orthop Surg Res. 2012 Jun 7;7:23. doi: 10.1186/1749-799X-7-23.

Abstract

BACKGROUND

Although many literature studied the effect of many factors on the prognosis of the early-onset Blount disease, studies that were written on the prognostic factors affecting late onset tibia vara are still limited.

PURPOSE

The aim of this study is to evaluate the prognostic value of the Langenskiold classification system for late onset tibia vara.

METHODS

Twenty children from the Sporting Health Insurance Student Reference Hospital-Alexandria, with a diagnosis of late onset tibia vara were evaluated for the effect of the Langenskiold staging system on the prognosis after they all had been treated by gradual correction by Ilizarov technique using the so called "juxta-articular hinge assembly" after a mean follow-up period of 4.9 years (range : 4-6, SD 0.75).

RESULTS

The difference in varus recurrence rates between the "low grade group" and "high grade group" was found to be statistically significant (p = 0.008) as will be discussed later. There was no statistically significant relation between the age of the patients at the time of operation, sex, length of the follow up period and the degree of pre-operative varus deformity angle (DA) and the recurrence (p > 0.05).

CONCLUSION

We concluded that Langenskiold staging system is a reliable, reproducible and a good prognostic factor for late onset tibia vara.

摘要

背景

尽管许多文献研究了许多因素对早发性 Blount 病预后的影响,但关于影响晚发性胫骨内翻的预后因素的研究仍然有限。

目的

本研究旨在评估 Langenskiold 分类系统对晚发性胫骨内翻的预后价值。

方法

从亚历山大体育健康保险学生参考医院选择 20 名诊断为晚发性胫骨内翻的儿童,在平均随访 4.9 年后(范围:4-6 岁,SD 0.75),所有患者均采用 Ilizarov 技术逐渐矫正,使用所谓的“关节旁铰链组件”,评估 Langenskiold 分期系统对预后的影响。

结果

“低等级组”和“高等级组”的内翻复发率差异具有统计学意义(p=0.008),如后所述。患者手术时的年龄、性别、随访时间长短以及术前内翻畸形角度(DA)与复发之间无统计学显著关系(p>0.05)。

结论

我们得出结论,Langenskiold 分期系统是一种可靠、可重复的、预测晚发性胫骨内翻的良好预后因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f8/3490732/1a0f0566a418/1749-799X-7-23-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验