Suppr超能文献

一种非典型的双组分系统,AtcR/AtcK,同时调控 中多种次生代谢物的生物合成。

An atypical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in .

机构信息

Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China.

Zhejiang Yongtai Technology Co., LTD., Taizhou, Zhejiang, China.

出版信息

Appl Environ Microbiol. 2024 Jan 24;90(1):e0130023. doi: 10.1128/aem.01300-23. Epub 2023 Dec 19.

Abstract

is an industrial producer of milbemycins, which are important anthelmintic and insecticidal agents. Two-component systems (TCSs), which are typically situated in the same operon and are composed of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in . Here, an atypical TCS, AtcR/AtcK, in which the encoding genes (sbi_06838/sbi_06839) are organized in a head-to-head pair, was demonstrated to be indispensable for the biosynthesis of multiple secondary metabolites in . With the null TCS mutants, the production of milbemycin and yellow compound was abolished but nanchangmycin was overproduced. Transcriptional analysis and electrophoretic mobility shift assays showed that AtcR regulated the biosynthesis of these three secondary metabolites by a MilR3-mediated cascade. First, AtcR was activated by phosphorylation from signal-triggered AtcK. Second, the activated AtcR promoted the transcription of . Third, MilR3 specifically activated the transcription of downstream genes from milbemycin and yellow compound biosynthetic gene clusters (BGCs) and from the nanchangmycin BGC. Finally, because NanR4 is a specific repressor in the nanchangmycin BGC, activation of MilR3 downstream genes led to the production of yellow compound and milbemycin but inhibited nanchangmycin production. By rewiring the regulatory cascade, two strains were obtained, the yield of nanchangmycin was improved by 45-fold to 6.08 g/L and the production of milbemycin was increased twofold to 1.34 g/L. This work has broadened our knowledge on atypical TCSs and provided practical strategies to engineer strains for the production of secondary metabolites in .IMPORTANCE is an important industrial strain that produces milbemycins. Two-component systems (TCSs), which consist of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in . Coupled encoding genes of TCSs are typically situated in the same operon. Here, TCSs with encoding genes situated in separate head-to-head neighbor operons were labeled atypical TCSs. It was found that the atypical TCS AtcR/AtcK played an indispensable role in the biosynthesis of milbemycin, yellow compound, and nanchangmycin in . This atypical TCS regulated the biosynthesis of specialized metabolites in a cascade mediated a cluster-situated regulator, MilR3. Through rewiring the regulatory pathways, strains were successfully engineered to overproduce milbemycin and nanchangmycin. To the best of our knowledge, this is the first report on atypical TCS, in which the encoding genes of RR and HK were situated in separate head-to-head neighbor operons, involved in secondary metabolism. In addition, data mining showed that atypical TCSs were widely distributed in actinobacteria.

摘要

是一种米贝霉素的工业生产者,米贝霉素是一种重要的驱虫和杀虫药物。双组分系统(TCSs)通常位于同一个操纵子中,由组氨酸激酶和应答调节因子组成,是参与调节 中次级代谢的主要信号转导途径。在这里,一个非典型的 TCS AtcR/AtcK,其编码基因(sbi_06838/sbi_06839)以头对头的方式排列,被证明在 中多种次级代谢物的生物合成中是不可或缺的。在缺失 TCS 突变体中,米贝霉素和黄色化合物的产量被消除,但南昌霉素的产量增加。转录分析和电泳迁移率变动分析表明,AtcR 通过 MilR3 介导的级联反应调控这三种次级代谢物的生物合成。首先,AtcR 被信号触发的 AtcK 磷酸化激活。其次,激活的 AtcR 促进了 的转录。第三,MilR3 特异性激活了米贝霉素和黄色化合物生物合成基因簇(BGCs)和 来自南昌霉素 BGC 的下游基因的转录。最后,由于 NanR4 是南昌霉素 BGC 中的特定抑制剂,MilR3 下游基因的激活导致黄色化合物和米贝霉素的产生,但抑制了南昌霉素的产生。通过重新布线调控级联,获得了两个菌株,南昌霉素的产量提高了 45 倍,达到 6.08g/L,米贝霉素的产量提高了两倍,达到 1.34g/L。这项工作拓宽了我们对非典型 TCS 的认识,并为工程菌株生产 中的次级代谢物提供了实用策略。

是一种重要的工业菌株,它产生米贝霉素。双组分系统(TCSs)由组氨酸激酶和应答调节因子组成,是参与调节 中次级代谢的主要信号转导途径。TCSs 的偶联编码基因通常位于同一个操纵子中。在这里,位于单独的头对头相邻操纵子中的 TCSs 被标记为非典型 TCSs。研究发现,非典型 TCS AtcR/AtcK 在 中米贝霉素、黄色化合物和南昌霉素的生物合成中起着不可或缺的作用。这种非典型 TCS 通过 MilR3 介导的级联反应调节专门代谢物的生物合成。通过重新布线调控途径,成功地对菌株进行了工程改造,以过量生产米贝霉素和南昌霉素。据我们所知,这是第一个关于非典型 TCS 的报告,其 RR 和 HK 的编码基因位于单独的头对头相邻操纵子中,参与次级代谢。此外,数据挖掘表明,非典型 TCSs 在放线菌中广泛分布。

相似文献

1
An atypical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0130023. doi: 10.1128/aem.01300-23. Epub 2023 Dec 19.
2
MilR3, a unique SARP family pleiotropic regulator in Streptomyces bingchenggensis.
Arch Microbiol. 2022 Sep 19;204(10):631. doi: 10.1007/s00203-022-03240-x.
3
Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin.
Appl Microbiol Biotechnol. 2013 Dec;97(23):10091-101. doi: 10.1007/s00253-013-5255-5. Epub 2013 Sep 29.
5
Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis.
J Bacteriol. 2010 Sep;192(17):4526-7. doi: 10.1128/JB.00596-10. Epub 2010 Jun 25.
6
SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in .
Front Microbiol. 2018 May 23;9:1064. doi: 10.3389/fmicb.2018.01064. eCollection 2018.
8
Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis.
Appl Microbiol Biotechnol. 2021 Mar;105(5):1875-1887. doi: 10.1007/s00253-021-11164-7. Epub 2021 Feb 10.
9
Recent advances in the research of milbemycin biosynthesis and regulation as well as strategies for strain improvement.
Arch Microbiol. 2021 Dec;203(10):5849-5857. doi: 10.1007/s00203-021-02575-1. Epub 2021 Sep 22.

引用本文的文献

2
Overexpression of the Wbl family regulator whiD modulates secondary metabolite biosynthesis in Streptomyces.
World J Microbiol Biotechnol. 2025 May 15;41(5):176. doi: 10.1007/s11274-025-04400-z.
4
The roles of SARP family regulators involved in secondary metabolism in .
Front Microbiol. 2024 Mar 14;15:1368809. doi: 10.3389/fmicb.2024.1368809. eCollection 2024.

本文引用的文献

1
Two-Component Systems of : An Intricate Network to Be Unraveled.
Int J Mol Sci. 2022 Dec 1;23(23):15085. doi: 10.3390/ijms232315085.
2
: The biofactory of secondary metabolites.
Front Microbiol. 2022 Sep 29;13:968053. doi: 10.3389/fmicb.2022.968053. eCollection 2022.
3
MilR3, a unique SARP family pleiotropic regulator in Streptomyces bingchenggensis.
Arch Microbiol. 2022 Sep 19;204(10):631. doi: 10.1007/s00203-022-03240-x.
4
SspH, a Novel HATPase Family Regulator, Controls Antibiotic Biosynthesis in .
Antibiotics (Basel). 2022 Apr 19;11(5):538. doi: 10.3390/antibiotics11050538.
5
Improving the Yield and Quality of Daptomycin in by Multilevel Metabolic Engineering.
Front Microbiol. 2022 Apr 18;13:872397. doi: 10.3389/fmicb.2022.872397. eCollection 2022.
8
Stepwise increase of thaxtomins production in Streptomyces albidoflavus J1074 through combinatorial metabolic engineering.
Metab Eng. 2021 Nov;68:187-198. doi: 10.1016/j.ymben.2021.10.008. Epub 2021 Oct 18.
9
Recent advances in the research of milbemycin biosynthesis and regulation as well as strategies for strain improvement.
Arch Microbiol. 2021 Dec;203(10):5849-5857. doi: 10.1007/s00203-021-02575-1. Epub 2021 Sep 22.
10
host for refactoring of diverse bioactive secondary metabolites.
3 Biotech. 2021 Jul;11(7):340. doi: 10.1007/s13205-021-02872-y. Epub 2021 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验