Suppr超能文献

RNA聚合酶催化与转位循环的分子动力学及突变分析

Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase.

作者信息

Kireeva Maria L, Opron Kristopher, Seibold Steve A, Domecq Céline, Cukier Robert I, Coulombe Benoit, Kashlev Mikhail, Burton Zachary F

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, E, Lansing, MI, 48824-1319, USA.

出版信息

BMC Biophys. 2012 Jun 7;5:11. doi: 10.1186/2046-1682-5-11.

Abstract

BACKGROUND

During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile "trigger loop" of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the "bridge helix" that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing.

RESULTS

All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as "switch" residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop.

CONCLUSIONS

Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation.

摘要

背景

在延伸过程中,多亚基RNA聚合酶(RNAPs)在磷酸二酯键形成和核酸易位之间循环。在与催化相关的构象中,催化亚基的可移动“触发环”在核苷三磷酸(NTP)底物上闭合。触发环的闭合预计会将水排除在活性位点之外,脱水可能有助于催化和保真度。在活性位点不存在NTP底物时,触发环打开,这可能使易位成为可能。RNAP催化中心的另一个显著结构元件是“桥螺旋”,它将活性位点与下游DNA分开。桥螺旋可能通过靠在RNA/DNA杂合体上弯曲来参与易位,以诱导RNAP向前移动并腾出活性位点用于下一个NTP加载。RNAP催化和易位构象之间的转变从静态晶体学快照中并不明显,在这些快照中,大分子运动可能受到晶体堆积的限制。

结果

嗜热栖热菌(Tt)RNAP的全原子分子动力学模拟揭示了位于触发环基部的两个螺旋内的柔性铰链,以及聚集在桥螺旋N末端附近的两个甘氨酸铰链。随着模拟的进行,这些铰链在闭合和开放的触发环结构中采用不同的构象。许多残基(称为“开关”残基)响应铰链方向的变化而交换原子接触(离子对或氢键)。酿酒酵母(Sc)RNAP II中铰链和开关残基的突变所产生的体内表型和体外活性支持了模拟预测的构象变化在催化和易位中的重要性。在模拟过程中,具有开放触发环的延伸复合物相对于具有闭合触发环的延伸复合物自发地向前易位。

结论

催化型和易位型RNAP形式之间的转换涉及触发环的闭合和开放以及氨基酸侧链原子接触的远程构象变化,其中一些位于距触发环和活性位点相当远的位置。触发环的闭合似乎支持RNA合成的化学过程和保真度。触发环的开放和有限的桥螺旋弯曲似乎促进核酸向前易位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eea/3533926/ec0041d0a122/2046-1682-5-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验