Suppr超能文献

转录的结构基础:使用自由电子激光研究 RNA 聚合酶 II 底物结合和金属配位。

Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser.

机构信息

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2318527121. doi: 10.1073/pnas.2318527121. Epub 2024 Aug 27.

Abstract

Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg, and, more importantly, a putative third (site C) Mg analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.

摘要

催化和多亚基 DNA 指导的 RNA 聚合酶的易位是所有细胞 mRNA 合成的基础。RNA 聚合酶 II(Pol II)从其活性部位埋藏的 DNA 模板链合成真核前体 mRNA。在近原子分辨率下进行催化的结构细节和关键活性位点组件的精确排列一直难以捉摸。在这里,我们展示了自由电子激光(FEL)结构的匹配 ATP 结合的 Pol II 和超活性 Rpb1 T834P 桥螺旋(BH)突变体,其分辨率为迄今为止最高。无辐射损伤的 FEL 结构揭示了完整的活性位点相互作用网络,包括封闭构象中的触发环(TL)、真正占据的 A 位和 B 位 Mg,更重要的是,类似于某些 DNA 聚合酶描述的但以前未在细胞 RNA 聚合酶中观察到的第三个(C 位)Mg。结构的分子动力学(MD)模拟表明,第三个 Mg 被配位并稳定在其观察到的位置。TL 残基提供了一半的底物结合口袋,而多个 TL/BH 相互作用诱导构象变化,可能允许在底物水解后进行易位。与 TL/BH 通讯一致,FEL 结构和 T834P 突变体的 MD 模拟揭示了一些活性位点相互作用的重新排列,支持活性位点功能的潜在可塑性和对中央通道宽度和 TL 构象的长程效应,可能以牺牲保真度为代价提高其延伸率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87f/11388330/bbf090b6a134/pnas.2318527121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验