Suppr超能文献

RNA聚合酶的桥螺旋YFI基序在催化、保真度和易位过程中的作用

The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.

作者信息

Nedialkov Yuri A, Opron Kristopher, Assaf Fadi, Artsimovitch Irina, Kireeva Maria L, Kashlev Mikhail, Cukier Robert I, Nudler Evgeny, Burton Zachary F

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA.

出版信息

Biochim Biophys Acta. 2013 Feb;1829(2):187-98. doi: 10.1016/j.bbagrm.2012.11.005. Epub 2012 Nov 30.

Abstract

The bridge α-helix in the β' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (β' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (β' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200μM NTPs and is strongly reduced in λ tR2 recognition at 1μM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the β subunit, whereas F773 communicates through the fork domain in the β subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.

摘要

RNA聚合酶(RNAP)β'亚基中的桥α-螺旋毗邻活性位点,可能在催化和转位过程中发挥作用。在大肠杆菌RNAP中,鉴定出桥螺旋N末端附近的一个大的疏水片段(β' 772-YFI-774;YFI基序)。YFI位于远离活性中心的位置,且与参与桥螺旋动态弯曲的甘氨酸铰链(β' 778-GARKG-782)相邻。值得注意的是,YFI中的氨基酸替换会显著改变RNAP的内在终止、暂停、保真度和转位。F773V RNAP在200μM NTPs时基本忽略λ tR2终止子,而在1μM NTPs时对λ tR2的识别能力大幅降低。F773V改变了RNAP的暂停和回溯,并有利于错误掺入。相比之下,相邻的Y772A替换提高了保真度,并表现出与F773V通常相反的其他转录缺陷。全原子分子动力学模拟揭示了源自YFI的两个独立功能连接,解释了替换的不同影响:Y772通过β亚基中的连接结构域与活性位点通信,而F773通过β亚基中的叉状结构域通信。I774与F环相互作用,F环也与桥螺旋的甘氨酸铰链接触。这些结果确定了在YFI处耦合的负向和正向回路,并用于调节催化、延伸、终止和转位。

相似文献

1
The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.
Biochim Biophys Acta. 2013 Feb;1829(2):187-98. doi: 10.1016/j.bbagrm.2012.11.005. Epub 2012 Nov 30.
2
Hinge action versus grip in translocation by RNA polymerase.
Transcription. 2018;9(1):1-16. doi: 10.1080/21541264.2017.1330179. Epub 2017 Aug 30.
3
Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase.
Biochim Biophys Acta. 2010 Aug;1799(8):575-87. doi: 10.1016/j.bbagrm.2010.05.002. Epub 2010 May 15.
6
The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors.
EMBO Rep. 2007 Nov;8(11):1038-43. doi: 10.1038/sj.embor.7401079. Epub 2007 Oct 5.
8
Transcription inhibition by the depsipeptide antibiotic salinamide A.
Elife. 2014 Apr 30;3:e02451. doi: 10.7554/eLife.02451.

引用本文的文献

1
Recent advances in mycobacterial transcription: insights beyond the general pathway.
J Bacteriol. 2025 Jul 24;207(7):e0015425. doi: 10.1128/jb.00154-25. Epub 2025 Jun 24.
2
Pleomorphic effects of three small-molecule inhibitors on transcription elongation by RNA polymerase.
bioRxiv. 2025 Feb 7:2025.02.07.637008. doi: 10.1101/2025.02.07.637008.
3
Transient-State Kinetic Analysis of the RNA Polymerase II Nucleotide Incorporation Mechanism.
Biochemistry. 2023 Jan 3;62(1):95-108. doi: 10.1021/acs.biochem.2c00608. Epub 2022 Dec 16.
6
The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase.
J Mol Biol. 2019 Sep 20;431(20):3975-4006. doi: 10.1016/j.jmb.2019.05.042. Epub 2019 May 31.
7
Active site closure stabilizes the backtracked state of RNA polymerase.
Nucleic Acids Res. 2018 Nov 16;46(20):10870-10887. doi: 10.1093/nar/gky883.
9
10
Hinge action versus grip in translocation by RNA polymerase.
Transcription. 2018;9(1):1-16. doi: 10.1080/21541264.2017.1330179. Epub 2017 Aug 30.

本文引用的文献

1
RNA polymerase stalls in a post-translocated register and can hyper-translocate.
Transcription. 2012 Sep-Oct;3(5):260-9. doi: 10.4161/trns.22307. Epub 2012 Sep 1.
3
Active site opening and closure control translocation of multisubunit RNA polymerase.
Nucleic Acids Res. 2012 Aug;40(15):7442-51. doi: 10.1093/nar/gks383. Epub 2012 May 8.
4
Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. doi: 10.1073/pnas.1200939109. Epub 2012 Apr 9.
5
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage.
Mol Cell. 2012 Apr 13;46(1):18-29. doi: 10.1016/j.molcel.2012.02.006. Epub 2012 Mar 8.
7
RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase.
Biochemistry. 2011 Aug 16;50(32):7002-14. doi: 10.1021/bi200437q. Epub 2011 Jul 21.
9
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6079-84. doi: 10.1073/pnas.1011274108. Epub 2011 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验