Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, South Korea.
Langmuir. 2012 Jun 26;28(25):9372-7. doi: 10.1021/la3014656. Epub 2012 Jun 7.
We describe the preparation of three-dimensional hierarchical twin-scale inverse opal (ts-IO) electrodes for dye-sensitized solar cells (DSSCs). The ts-IO TiO(2) structure was obtained from a template fabricated via the assembly of mesoscale colloidal particles (40-80 nm in diameter) in the confined geometry of a macroporous IO structure. The photovoltaic properties of ts-IO electrodes were optimized by varying the layer thickness or the size of mesopores in the mesoscale colloidal assembly. Electron transport was investigated using impedance spectroscopy. The result showed that due to the competing effects of recombination and dye adsorption, the maximum efficiency was observed at an electrode thickness of 12 μm. The electrodes of smaller mesopores diameters yielded the higher photocurrent density due to the decrease in the electron transport resistance at the TiO(2)/dye interface. A maximum efficiency of 6.90% was obtained using an electrode 12 μm thick and a mesopore diameter of 35 nm.
我们描述了三维分级双尺度反蛋白石(ts-IO)电极在染料敏化太阳能电池(DSSCs)中的制备方法。ts-IO TiO2 结构是通过在大孔 IO 结构的受限几何形状中组装介观胶体颗粒(直径 40-80nm)而得到的模板制备的。通过改变层厚度或介观胶体组装中的介孔尺寸来优化 ts-IO 电极的光伏性能。使用阻抗谱研究了电子输运。结果表明,由于复合和染料吸附的竞争效应,在电极厚度为 12μm 时观察到最大效率。由于 TiO2/染料界面处的电子传输电阻减小,较小介孔直径的电极产生了更高的光电流密度。使用厚度为 12μm 且介孔直径为 35nm 的电极获得了 6.90%的最大效率。