Suppr超能文献

用于高效染料敏化太阳能电池的分级电极的自下而上生长。

Bottom-up growth of hierarchical electrodes for highly efficient dye-sensitized solar cells.

机构信息

Department of Chemical and Biomolecular Engineering, Sogang University , Seoul 121-742, South Korea.

出版信息

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3589-95. doi: 10.1021/am300664x. Epub 2012 Jun 27.

Abstract

The nonconventional bottom-up growth of TiO2 was first demonstrated in the preparation of hierarchical TiO2 electrodes for use in highly efficient dye-sensitized solar cells. The simple immersion of a substrate in a precursor solution enabled the growth of TiO2 particulate films. Here, we have implemented a hierarchical growth strategy in which two stages of controlled growth yielded first macroscale TiO2 particles, followed by mesoscale TiO2 particles. We successfully fabricated electrode films up to 20 μm thick via a growth rate of 0.3 μm/min. The specific area of the electrodes was controlled via the deposition of mesoscale TiO2 particles. The deposited particles displayed a rutile phase with an average size of several tens of nanometers in diameter, as confirmed by XRD and high-resolution TEM imaging. After depositing the second layer of mesoscale TiO2 particles, the photocurrent density increased by a factor of 3. A maximum efficiency of 6.84% was obtained for the hierarchically structured TiO2 electrodes under 1 sun illumination. The hierarchical TiO2 electrodes were compared with macroporous TiO2 electrodes, revealing that the higher photocurrent density could be attributed to a longer electron recombination lifetime and a high specific area. The longer recombination lifetime was supported by the presence of fewer defective TiO2 surfaces, as confirmed by the XPS spectrum.

摘要

TiO2 的非传统的自下而上的生长首次在用于高效染料敏化太阳能电池的分级 TiO2 电极的制备中得到证明。通过将基底简单地浸入前驱体溶液中,即可实现 TiO2 颗粒膜的生长。在此,我们实施了一种分级生长策略,其中两个受控生长阶段首先产生宏观尺度的 TiO2 颗粒,然后是介观尺度的 TiO2 颗粒。我们通过 0.3μm/min 的生长速率成功地制造了厚度高达 20μm 的电极膜。通过沉积介观 TiO2 颗粒来控制电极的比表面积。沉积的颗粒显示出锐钛矿相,其直径的平均尺寸为几十纳米,这通过 XRD 和高分辨率 TEM 成像得到了证实。在沉积第二层介观 TiO2 颗粒后,光电流密度增加了 3 倍。在 1 太阳光照下,分层结构的 TiO2 电极获得了 6.84%的最高效率。将分层 TiO2 电极与大孔 TiO2 电极进行比较,表明较高的光电流密度可归因于更长的电子复合寿命和更高的比表面积。XPS 光谱证实,较少的 TiO2 表面缺陷支持更长的复合寿命。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验