Centre for Computational Neuroscience and Robotics, University of Sussex, UK.
J Neurosci Methods. 2012 Jul 30;209(1):178-88. doi: 10.1016/j.jneumeth.2012.05.030. Epub 2012 Jun 5.
Detrended fluctuation analysis (DFA) is a technique commonly used to assess and quantify the presence of long-range temporal correlations (LRTCs) in neurophysiological time series. Convergence of the method is asymptotic only and therefore its application assumes a constant scaling exponent. However, most neurophysiological data are likely to involve either spontaneous or experimentally induced scaling exponent changes. We present a novel extension of the DFA method that permits the characterisation of time-varying scaling exponents. The effectiveness of the methodology in recovering known changes in scaling exponents is demonstrated through its application to synthetic data. The dependence of the method on its free parameters is systematically explored. Finally, application of the methodology to neurophysiological data demonstrates that it provides experimenters with a way to identify previously un-recognised changes in the scaling exponent in the data. We suggest that this methodology will make it possible to go beyond a simple demonstration of the presence of scaling to an appreciation of how it may vary in response to either intrinsic changes or experimental perturbations.
去趋势波动分析(DFA)是一种常用于评估和量化神经生理时间序列中长程时间相关性(LRTC)的技术。该方法的收敛是渐近的,因此其应用假设了一个恒定的标度指数。然而,大多数神经生理数据很可能涉及自发或实验诱导的标度指数变化。我们提出了一种 DFA 方法的新扩展,该方法允许对时变标度指数进行特征化。通过将该方法应用于合成数据,证明了该方法在恢复已知标度指数变化方面的有效性。该方法对其自由参数的依赖性进行了系统的探讨。最后,该方法在神经生理数据中的应用表明,它为实验者提供了一种方法来识别数据中以前未被识别的标度指数变化。我们认为,这种方法将使人们能够超越对标度存在的简单证明,而对其如何响应内在变化或实验干扰而变化有更深入的了解。