Smith Rachel J, Ombao Hernando C, Shrey Daniel W, Lopour Beth A
IEEE J Biomed Health Inform. 2020 Apr;24(4):1070-1079. doi: 10.1109/JBHI.2019.2936326. Epub 2019 Aug 29.
Detrended Fluctuation Analysis (DFA) is a statistical estimation algorithm used to assess long-range temporal dependence in neural time series. The algorithm produces a single number, the DFA exponent, that reflects the strength of long-range temporal correlations in the data. No methods have been developed to generate confidence intervals for the DFA exponent for a single time series segment. Thus, we present a statistical measure of uncertainty for the DFA exponent in electroencephalographic (EEG) data via application of a moving-block bootstrap (MBB). We tested the effect of three data characteristics on the DFA exponent: (1) time series length, (2) the presence of artifacts, and (3) the presence of discontinuities. We found that signal lengths of ∼5 minutes produced stable measurements of the DFA exponent and that the presence of artifacts positively biased DFA exponent distributions. In comparison, the impact of discontinuities was small, even those associated with artifact removal. We show that it is possible to combine a moving block bootstrap with DFA to obtain an accurate estimate of the DFA exponent as well as its associated confidence intervals in both simulated data and human EEG data. We applied the proposed method to human EEG data to (1) calculate a time-varying estimate of long-range temporal dependence during a sleep-wake cycle of a healthy infant and (2) compare pre- and post-treatment EEG data within individual subjects with pediatric epilepsy. Our proposed method enables dynamic tracking of the DFA exponent across the entire recording period and permits within-subject comparisons, expanding the utility of the DFA algorithm by providing a measure of certainty and formal tests of statistical significance for the estimation of long-range temporal dependence in neural data.
去趋势波动分析(DFA)是一种用于评估神经时间序列中长程时间依赖性的统计估计算法。该算法产生一个单一数字,即DFA指数,它反映了数据中长程时间相关性的强度。目前尚未开发出针对单个时间序列段生成DFA指数置信区间的方法。因此,我们通过应用移动块自举法(MBB),提出了一种针对脑电图(EEG)数据中DFA指数的不确定性统计量度。我们测试了三个数据特征对DFA指数的影响:(1)时间序列长度,(2)伪迹的存在,以及(3)间断点的存在。我们发现,约5分钟的信号长度能产生稳定的DFA指数测量值,并且伪迹的存在会使DFA指数分布产生正偏差。相比之下,间断点的影响较小,即使是与去除伪迹相关的间断点。我们表明,将移动块自举法与DFA相结合,可以在模拟数据和人类EEG数据中准确估计DFA指数及其相关的置信区间。我们将所提出的方法应用于人类EEG数据,以(1)计算健康婴儿睡眠-觉醒周期中长程时间依赖性的时变估计值,以及(2)比较患有小儿癫痫的个体受试者治疗前后的EEG数据。我们提出的方法能够在整个记录期间动态跟踪DFA指数,并允许进行个体内比较,通过为神经数据中长程时间依赖性的估计提供确定性度量和统计显著性的形式检验,扩展了DFA算法的实用性。