Max-Planck-Institut für Neurobiologie, Martinsried, Germany.
Biophys J. 2012 May 16;102(10):2401-10. doi: 10.1016/j.bpj.2012.03.065. Epub 2012 May 15.
Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors.
基因编码的钙指示剂在对复杂组织和体内神经元回路的信号进行成像方面已经成为重要工具。尽管它们很重要,但由于这些传感器的人为和多模块组成,其结构-功能关系通常仍未得到充分描述。在这里,我们描述了一种结合蛋白质工程和动力学、光谱学和生物物理分析的方法,用于研究基于Förster 共振能量转移(FRET)的钙生物传感器 TN-XXL。通过对工程化酪氨酸的荧光光谱分析,我们表明,四个钙结合 EF 手结构中的两个主导了 TN-XXL 的 FRET 输出,并且这些手的局部构象变化与 FRET 变化的动力学相匹配。通过小角 X 射线散射和 NMR 光谱学,我们表明 TN-XXL 在结合钙离子时从灵活的伸长状态转变为刚性的球形状态,从而导致 FRET 信号输出。此外,我们比较了使用荧光寿命光谱学和比率方法进行的钙滴定,并研究了可能影响荧光团的潜在非 FRET 效应。因此,我们的数据详细描述了 TN-XXL 的生物物理学特性,并可能为进一步合理设计基于 FRET 的生物传感器奠定基础。