Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany.
IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
J Biol Chem. 2021 Jan-Jun;296:100662. doi: 10.1016/j.jbc.2021.100662. Epub 2021 Apr 19.
Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
光激活生物系统会改变其发色团的光学性质,这被称为光谱调谐。确定光谱调谐的分子起源对于理解这些生物分子的功能和开发应用至关重要。在黄素结合荧光蛋白(FbFP)中,光谱调谐是有限的,因为它们依赖于与蛋白质结合的黄素,而黄素的结构及其电子性质不能通过突变来改变。通过在黄素结合口袋内引入一个赖氨酸,已经创建了一种来自植物的改良光、氧、电压 FbFP 的蓝移变体,但这种蓝移的分子基础仍未得到证实。我们在这里通过引入类似的突变,对结构进行了蓝移改良光、氧、电压变体的表征,并构建了一个新的蓝移 CagFbFP 蛋白。两种蛋白质的 X 射线结构揭示了赖氨酸从发色团的位移以及结构的打开,这是蓝移的关键因素。定点饱和突变和高通量筛选产生了一个红移变体,结构分析表明,蓝移变体的赖氨酸侧链通过一个二级突变稳定在靠近黄素的位置,这解释了红移。因此,在蓝移变体中增加一个额外的突变就足以产生一个红移 FbFP。通过光谱学、X 射线晶体学和量子力学-分子力学计算,我们对 FbFP 的光谱调谐提供了一个坚实的结构和功能理解。我们还表明,所鉴定的蓝移和红移变体允许基于光谱分离的双色显微镜。总之,所产生的蓝移和红移变体代表了在生命科学中应用的有前途的新工具。