Centre for Research in Environmental Epidemiology (CREAL), Radiation programme, IMIM (Hospital del Mar Research Institute) and CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain.
Institut Curie, Inserm U612, Centre Universitaire, Bats 110-112, Orsay 91405, France.
Mutat Res. 2012 Oct-Dec;751(2):258-286. doi: 10.1016/j.mrrev.2012.05.003. Epub 2012 Jun 4.
Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin(-1)) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.
电离辐射是一种已知的人类致癌物,它可以根据物理性质、持续时间、剂量和剂量率的暴露,诱导各种生物学效应。然而,由于缺乏直接的人类证据,低剂量和低剂量率(低于 100mSv 和/或 0.1mSvmin(-1)) 的健康风险程度仍然存在争议。预计通过将分子流行病学研究与生物标志物和生物测定相结合,整合流行病学和生物学研究将产生重大见解。已经使用了许多这些方法来研究暴露、效应和对电离辐射的易感性,尽管通常在更高的剂量和剂量率下进行,每种方法都反映了有限时间的细胞或生理变化。这篇综述总结了在欧洲项目 DoReMi(低剂量研究向多学科整合)框架内进行的多学科工作,以确定最适合用于人群研究的生物标志物。除了进行大规模流行病学研究的后勤和伦理考虑因素外,我们还讨论了它们在评估细胞和生理水平低剂量电离辐射暴露效应方面的相关性。我们还提出了一个生物标志物的时间分类,这可能与分子流行病学研究相关,这些研究需要考虑自暴露以来经过的时间。最后,生物学与流行病学的整合需要流行病学、生物学和剂量学社区之间进行仔细的规划和增强讨论,以便根据实际考虑因素(包括要研究的适当人群(职业、环境或医疗暴露)和研究设计)确定要解决的最重要问题。还必须考虑生物样本采集、处理和储存的后勤工作以及生物标志物或生物测定的选择,以及对潜在混杂因素的认识。