Suppr超能文献

TolRad 是一种使用 Pfam 注释预测辐射耐受性的模型,它可以从参考基因组和 MAGs 中识别新型辐射敏感细菌物种。

TolRad, a model for predicting radiation tolerance using Pfam annotations, identifies novel radiosensitive bacterial species from reference genomes and MAGs.

机构信息

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA.

出版信息

Microbiol Spectr. 2024 Oct 3;12(10):e0383823. doi: 10.1128/spectrum.03838-23. Epub 2024 Sep 5.

Abstract

UNLABELLED

The trait of ionizing radiation (IR) tolerance is variable between bacterium, with species succumbing to acute doses as low as 60 Gy and extremophiles able to survive doses exceeding 10,000 Gy. While survival screens have identified multiple highly radioresistant bacteria, such systemic searches have not been conducted for IR-sensitive bacteria. The taxonomy-level diversity of IR sensitivity is poorly understood, as are genetic elements that influence IR sensitivity. Using the protein domain (Pfam) frequencies from 61 bacterial species with experimentally determined values (the dose at which only 10% of the population survives), we trained TolRad, a random forest binary classifier, to distinguish between radiosensitive ( < 200 Gy) and radiation-tolerant ( > 200 Gy) bacteria. On untrained species, TolRad had an accuracy of 0.900. We applied TolRad to 152 UniProt-hosted bacterial proteomes associated with the human microbiome, including 37 strains from the ATCC Human Microbiome Collection, and classified 34 species as radiosensitive. Whereas IR-sensitive species ( < 200 Gy) in the training data set had been confined to the phylum , this initial TolRad screen identified radiosensitive bacteria in two additional phyla. We experimentally validated the predicted radiosensitivity of a species from the human microbiome. To demonstrate that TolRad can be applied to metagenome-assembled genomes (MAGs), we tested the accuracy of TolRad on Egg-NOG assembled proteomes (0.965) and partial proteomes. Finally, three collections of MAGs were screened using TolRad, identifying further phyla with radiosensitive species and suggesting that environmental conditions influence the abundance of radiosensitive bacteria.

IMPORTANCE

Bacterial species have vast genetic diversity, allowing for life in extreme environments and the conduction of complex chemistry. The ability to harness the full potential of bacterial diversity is hampered by the lack of high-throughput experimental or bioinformatic methods for characterizing bacterial traits. Here, we present a computational model that uses -generated genome annotations to classify a bacterium as tolerant of ionizing radiation (IR) or as radiosensitive. This model allows for rapid screening of bacterial communities for low-tolerance species that are of interest for both mechanistic studies into bacterial sensitivity to IR and biomarkers of IR exposure.

摘要

未加标签

电离辐射(IR)耐受特性在细菌之间存在差异,某些细菌物种仅在急性剂量低至 60Gy 时就会死亡,而极端微生物在接受超过 10000Gy 的剂量时仍能存活。虽然生存筛选已经确定了多种具有高辐射抗性的细菌,但对于 IR 敏感细菌尚未进行此类系统性搜索。IR 敏感性的分类学水平多样性以及影响 IR 敏感性的遗传元件尚不清楚。我们使用了 61 种具有实验确定的 值(仅 10%的种群存活的剂量)的细菌的蛋白质结构域(Pfam)频率来训练 TolRad,这是一种随机森林二进制分类器,用于区分辐射敏感(<200Gy)和辐射耐受(>200Gy)细菌。在未受过训练的物种上,TolRad 的准确率为 0.900。我们将 TolRad 应用于 152 种与人类微生物组相关的 UniProt 托管细菌蛋白质组,其中包括来自 ATCC 人类微生物组收藏的 37 株菌株,并将 34 种物种分类为辐射敏感。在训练数据集中,IR 敏感物种(<200Gy)仅限于门,但初始 TolRad 筛选在另外两个门中发现了辐射敏感细菌。我们通过实验验证了人类微生物组中一种物种的预测辐射敏感性。为了证明 TolRad 可应用于宏基因组组装基因组(MAG),我们在 Egg-NOG 组装蛋白质组(0.965)和部分蛋白质组上测试了 TolRad 的准确性。最后,使用 TolRad 筛选了三个 MAG 集合,发现了更多具有辐射敏感物种的门,并表明环境条件会影响辐射敏感细菌的丰度。

重要性

细菌物种具有广泛的遗传多样性,这使它们能够在极端环境中生存并进行复杂的化学过程。缺乏用于描述细菌特性的高通量实验或生物信息学方法,这阻碍了充分利用细菌多样性的能力。在这里,我们提出了一种计算模型,该模型使用 Pfam 生成的基因组注释将细菌分类为耐受电离辐射(IR)或辐射敏感。该模型允许快速筛选细菌群落中低耐受物种,这些物种既对细菌对 IR 的敏感性的机制研究有兴趣,也对 IR 暴露的生物标志物有兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224e/11466087/2f4624e5920b/spectrum.03838-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验