Suppr超能文献

网络注册系统中系统性银屑病治疗数据综合的挑战。

Challenges for synthesising data in a network of registries for systemic psoriasis therapies.

机构信息

Division of Applied Medicine, University of Aberdeen, Aberdeen, UK.

出版信息

Dermatology. 2012;224(3):236-43. doi: 10.1159/000338572. Epub 2012 Jun 1.

Abstract

BACKGROUND

Large disease registries are the preferred method to assess long-term treatment safety. If psoriasis registries collaborate in a network, their power to assess safety is increased.

OBJECTIVE

To identify heterogeneity in psoriasis registries and methodological challenges for synthesising the data they provide.

METHODS

We surveyed the registries in PSONET and identified and addressed the challenges to collaborative analysis for the network in several round table meetings.

RESULTS

Eight out of 10 registries had a prospective comparator cohort with similar disease characteristics but not on biologics. Registries differed in the coding and validation or follow-up of adverse events and in the way they sampled their population. Fifteen challenges to registries collaborating were identified in the areas of operational governance, structural conduct, bias and analysis.

CONCLUSIONS

Participation in PSONET, a network of psoriasis registries, helps identify and solve common issues, enhancing the individual registries, and provides larger sets of more powerful safety data in a diverse population. Challenges to interpreting data collectively include heterogeneity in sampling, variable penetration of biologics and compatibility of different datasets.

摘要

背景

大型疾病登记处是评估长期治疗安全性的首选方法。如果银屑病登记处能够在网络中进行合作,那么它们评估安全性的能力将会得到提高。

目的

确定银屑病登记处之间的差异以及综合分析其提供的数据所面临的方法学挑战。

方法

我们调查了 PSONET 中的登记处,并在几次圆桌会议上确定并解决了网络协作分析所面临的挑战。

结果

10 个登记处中有 8 个具有相似疾病特征但未使用生物制剂的前瞻性对照队列。登记处之间在不良事件的编码和验证或随访以及人群抽样方式上存在差异。在运营治理、结构管理、偏倚和分析等领域,共发现了 15 个登记处合作面临的挑战。

结论

参与 PSONET(一个银屑病登记处网络)有助于发现和解决共同问题,增强各个登记处的实力,并在多样化的人群中提供更强大的安全性数据。集体解释数据所面临的挑战包括抽样的异质性、生物制剂的不同渗透率以及不同数据集的兼容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验