Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour, Hélioparc, 64053, Pau, France.
Environ Sci Pollut Res Int. 2013 Mar;20(3):1269-80. doi: 10.1007/s11356-012-1019-5. Epub 2012 Jun 8.
The fate of mercury (Hg) and tin (Sn) compounds in ecosystems is strongly determined by their alkylation/dealkylation pathways. However, the experimental determination of those transformations is still not straightforward and methodologies need to be refined. The purpose of this work is the development of a comprehensive and adaptable tool for an accurate experimental assessment of specific formation/degradation yields and half-lives of elemental species in different aquatic environments. The methodology combines field incubations of coastal waters and surface sediments with the addition of species-specific isotopically enriched tracers and a mathematical approach based on the deconvolution of isotopic patterns. The method has been applied to the study of the environmental reactivity of Hg and Sn compounds in coastal water and surface sediment samples collected in two different coastal ecosystems of the South French Atlantic Coast (Arcachon Bay and Adour Estuary). Both the level of isotopically enriched species and the spiking solution composition were found to alter dibutyltin and monomethylmercury degradation yields, while no significant changes were measurable for tributyltin and Hg(II). For butyltin species, the presence of light was found to be the main source of degradation and removal of these contaminants from surface coastal environments. In contrast, photomediated processes do not significantly influence either the methylation of mercury or the demethylation of methylmercury. The proposed method constitutes an advancement from the previous element-specific isotopic tracers' approaches, which allows for instance to discriminate the extent of net and oxidative Hg demethylation and to identify which debutylation step is controlling the environmental persistence of butyltin compounds.
汞(Hg)和锡(Sn)化合物在生态系统中的命运主要取决于它们的烷基化/脱烷基途径。然而,这些转化的实验测定仍然不是很直接,需要改进方法。本工作的目的是开发一种全面且适应性强的工具,用于准确评估不同水生环境中元素物种的特定形成/降解产率和半衰期。该方法结合了沿海水域和表层沉积物的现场培养,添加了具有特定物种的同位素富集示踪剂,并采用基于同位素模式反卷积的数学方法。该方法已应用于研究法国南部大西洋海岸两个不同沿海生态系统(阿卡雄湾和阿杜尔河口)采集的沿海水和表层沉积物样品中 Hg 和 Sn 化合物的环境反应性。发现添加的同位素富集示踪剂的水平和浓度都会改变二丁基锡和单甲基汞的降解产率,而三丁基锡和 Hg(II)的降解产率则没有明显变化。对于丁基锡,发现光照是这些污染物从表层沿海环境中降解和去除的主要来源。相比之下,光介导过程不会显著影响汞的甲基化或甲基汞的脱甲基化。所提出的方法是对以前的元素特异性同位素示踪剂方法的改进,例如可以区分净和氧化 Hg 脱甲基化的程度,并确定控制丁基锡化合物在环境中持久性的脱丁基步骤。