State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
Small. 2012 Sep 24;8(18):2833-40. doi: 10.1002/smll.201102468. Epub 2012 Jun 8.
The hysteresis effect is a common problem in graphene field-effect transistors (FETs). Usually, the external doping to graphene is considered to be responsible for the hysteresis behavior, but is not yet clearly understood. By monitoring the doping of graphene and the hysteresis in graphene FETs under different atmospheres using in situ Raman spectroscopy, it is confirmed that the electrochemical doping of O(2) /H(2) O redox couple to graphene is responsible for the hysteresis effect. In addition, Raman spectra of graphene on SiO(2) substrate show stronger doping than that suspended, which indicates that SiO(2) substrate plays an important role in the doping of graphene. Herein it is proposed that the doping species (H(2) O and O(2) ) are bounded at the interface of graphene/SiO(2) substrate by hydrogen-bonds with the silanol groups on SiO(2) substrate. The dynamic equilibrium process of the charge-transfer between H(2) O/O(2) redox couple and graphene under electrical field modulation is carefully analyzed using Marcus-Gerischer theory. This work provides a clear view to the mechanism of the hysteresis effect, and is of benefit to a reliable design to suppress the hysteresis in graphene FETs.
滞后效应是石墨烯场效应晶体管(FET)中常见的问题。通常,认为外部掺杂对石墨烯是造成滞后行为的原因,但尚未得到明确的解释。通过使用原位拉曼光谱监测不同气氛下石墨烯的掺杂和石墨烯 FET 中的滞后现象,可以证实电化学掺杂 O(2)/H(2)O 氧化还原对石墨烯是造成滞后效应的原因。此外,SiO(2)衬底上石墨烯的拉曼光谱显示出比悬浮状态更强的掺杂,这表明 SiO(2)衬底在石墨烯的掺杂中起着重要作用。本文提出,掺杂物种(H(2)O 和 O(2))通过与 SiO(2)衬底上的硅醇基团形成氢键,束缚在石墨烯/SiO(2)衬底的界面上。利用马库斯-盖尔希勒理论(Marcus-Gerischer theory),对电场调制下 H(2)O/O(2)氧化还原对和石墨烯之间的电荷转移的动态平衡过程进行了仔细分析。这项工作为滞后效应的机制提供了清晰的认识,有利于可靠地设计抑制石墨烯 FET 中的滞后。