Suppr超能文献

通过简单改变配体设计来控制金属有机骨架的互贯和气体吸附性能。

Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design.

机构信息

Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.

出版信息

Chemistry. 2012 Jul 9;18(28):8673-80. doi: 10.1002/chem.201200456. Epub 2012 Jun 8.

Abstract

In metal-organic framework (MOF) chemistry, interpenetration greatly affects the gas-sorption properties. However, there is a lack of a systematic study on how to control the interpenetration and whether the interpenetration enhances gas uptake capacities or not. Herein, we report an example of interpenetration that is simply controlled by the presence of a carbon-carbon double or single bond in identical organic building blocks, and provide a comparison of gas-sorption properties for these similar frameworks, which differ only in their degree of interpenetration. Noninterpenetrated (SNU-70) and doubly interpenetrated (SNU-71) cubic nets were prepared by a solvothermal reaction of [Zn(NO(3))(2)]⋅6 H(2)O in N,N-diethylformamide (DEF) with 4-(2-carboxyvinyl)benzoic acid and 4-(2-carboxyethyl)benzoic acid, respectively. They have almost-identical structures, but the noninterpenetrated framework has a much bigger pore size (ca. 9.0×9.0 Å) than the interpenetrated framework (ca. 2.5×2.5 Å). Activation of the MOFs by using supercritical CO(2) gave SNU-70' and SNU-71'. The simulation of the PXRD pattern of SNU-71' indicates the rearrangement of the interpenetrated networks on guest removal, which increases pore size. SNU-70' has a Brunauer-Emmett-Teller (BET) surface area of 5290 m(2) g(-1), which is the highest value reported to date for a MOF with a cubic-net structure, whereas SNU-71' has a BET surface area of 1770 m(2) g(-1). In general, noninterpenetrated SNU-70' exhibits much higher gas-adsorption capacities than interpenetrated SNU-71' at high pressures, regardless of the temperature. However, at P<1 atm, the gas-adsorption capacities for N(2) at 77 K and CO(2) at 195 K are higher for noninterpenetrated SNU-70' than for interpenetrated SNU-71', but the capacities for H(2) and CH(4) are the opposite; SNU-71' has higher uptake capacities than SNU-70' due to the higher isosteric heat of gas adsorption that results from the smaller pores. In particular, SNU-70' has exceptionally high H(2) and CO(2) uptake capacities. By using a post-synthetic method, the CC double bond in SNU-70 was quantitatively brominated at room temperature, and the MOF still showed very high porosity (BET surface area of 2285 m(2) g(-1)).

摘要

在金属有机骨架(MOF)化学中,互贯极大地影响气体吸附性能。然而,缺乏对如何控制互贯以及互贯是否增强气体吸收能力的系统研究。本文报道了一个通过在相同的有机构筑块中存在碳-碳双键或单键来简单控制互贯的例子,并对这些具有不同互贯程度的相似骨架的气体吸附性能进行了比较。通过在 N,N-二乙基甲酰胺(DEF)中使用[Zn(NO3)(2)]·6H2O 与 4-(2-羧基乙烯基)苯甲酸和 4-(2-羧乙基)苯甲酸的溶剂热反应,分别制备了非互贯的(SNU-70)和双互贯的(SNU-71)立方网络。它们具有几乎相同的结构,但非互贯骨架的孔径(约 9.0×9.0Å)比互贯骨架(约 2.5×2.5Å)大得多。通过使用超临界 CO2 对 MOF 进行活化,得到了 SNU-70'和 SNU-71'。SNU-71'的 PXRD 图谱模拟表明,在客体去除时互贯网络的重排增加了孔径。SNU-70'的 Brunauer-Emmett-Teller(BET)表面积为 5290 m2g-1,这是迄今为止报道的具有立方网络结构的 MOF 中最高值,而 SNU-71'的 BET 表面积为 1770 m2g-1。一般来说,无论温度如何,非互贯的 SNU-70'在高压下表现出比互贯的 SNU-71'更高的气体吸附容量。然而,在 P<1 atm 时,77 K 下的 N2 和 195 K 下的 CO2 的吸附容量对于非互贯的 SNU-70'高于互贯的 SNU-71',但 H2 和 CH4 的吸附容量则相反;由于较小的孔径导致气体吸附等焓较高,SNU-71'的吸附容量高于 SNU-70'。特别是,SNU-70'具有异常高的 H2 和 CO2 吸附容量。通过后合成方法,在室温下定量溴化 SNU-70 中的 CC 双键,MOF 仍然表现出非常高的孔隙率(BET 表面积为 2285 m2g-1)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验