Suppr超能文献

基于蒙特卡洛方法的脑肿瘤中子俘获治疗剂量测定与治疗计划

Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.

作者信息

Zamenhof R G, Clement S D, Harling O K, Brenner J F, Wazer D E, Madoc-Jones H, Yanch J C

机构信息

Department of Radiation Oncology, Tufts-New England Medical Center, Boston, MA.

出版信息

Basic Life Sci. 1990;54:283-305. doi: 10.1007/978-1-4684-5802-2_22.

Abstract

Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces (with RBE weighting) a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction. With parallel-opposed lateral irradiation, the planar advantage depth contour for this beam (with the B-10 distribution defined above) encompasses nearly the whole brain. Experimental calibration techniques for the conversion of normalized to absolute treatment plans are described.

摘要

已开发出基于蒙特卡罗的剂量测定法和用于中子俘获治疗的计算机辅助治疗计划,以在麻省理工学院研究反应堆二期超热中子束上进行的物理剂量测量与放射肿瘤学家将大量剂量数据综合成针对每个患者的具有临床意义的治疗计划的需求之间建立必要联系。蒙特卡罗模拟已用于表征由为中子俘获治疗应用设计的超热中子束照射的颅骨/脑模型内的空间剂量分布。介绍了用于数学颅骨/脑模型的几何形状和元素组成以及中子和光子注量到剂量的转换形式。描述了专门为中子俘获治疗开发的治疗计划程序NCTPLAN。给出了示例,说明了使用实验性超热中子束在脑内可获得的一维和二维剂量分布,以及为中子俘获治疗制定的束流质量和治疗计划疗效标准。说明了将三维计算机断层扫描图像数据纳入治疗计划程序的情况。实验性超热中子束的最大可用圆形直径为20厘米,肿瘤中硼 - 10含量为30 ppm,血液中硼 - 10含量为3 ppm,它(采用相对生物效应加权)产生束轴优势深度为7.4厘米、束轴优势比为1.83、整体优势比为1.70以及肿瘤的优势深度相对生物效应剂量率为20.6相对生物效应厘戈瑞/分钟(厘焦耳/千克 - 分钟)。这些特性使该束非常适合临床应用,能够在六个分次中将2000相对生物效应厘戈瑞/分钟(厘焦耳/千克 - 分钟)的相对生物效应剂量输送到脑中线的肿瘤,每次分次治疗时间约为16分钟。采用平行相对侧向照射时,该束(具有上述硼 - 10分布)的平面优势深度轮廓几乎涵盖整个脑部。描述了将归一化治疗计划转换为绝对治疗计划的实验校准技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验