Suppr超能文献

基于蒙特卡罗方法的硼中子俘获治疗计划,使用从CT数据自动生成的定制设计模型。

Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.

作者信息

Zamenhof R, Redmond E, Solares G, Katz D, Riley K, Kiger S, Harling O

机构信息

Department of Radiation Oncology, Tufts University School of Medicine, Boston, MA, USA.

出版信息

Int J Radiat Oncol Biol Phys. 1996 May 1;35(2):383-97. doi: 10.1016/0360-3016(96)00084-3.

Abstract

PURPOSE

A Monte Carlo-based treatment planning code for boron neutron capture therapy (BNCT), called NCTPLAN, has been developed in support of the New England Medical Center-Massachusetts Institute of Technology program in BNCT. This code has been used to plan BNCT irradiations in an ongoing peripheral melanoma BNCT protocol. The concept and design of the code is described and illustrative applications are presented.

METHODS AND MATERIALS

NCTPLAN uses thin-slice Computed Tomography (CT) image data to automatically create a heterogeneous multimaterial model of the relevant body part, which is then used as input to a Monte Carlo simulation code, MCNP, to derive distributions within the model. Results are displayed as isocontours superimposed on precisely corresponding CT images of the body part. Currently the computational slowness of the dose calculations precludes efficient treatment planning per se, but does provide the radiation oncologist with a preview of the doses that will be delivered to tumors and to various normal tissues, and permits neutron irradiation times in Megawatt-minutes (MW-min) to be calculated for specific dose prescriptions. The validation of the NCTPLAN results by experimental mixed-field dosimetry is presented. A typical application involving a cranial parallel-opposed epithermal neutron beam irradiation of a human subject with a glioblastoma multiforme is illustrated showing relative biological effectiveness-isodose (RBE) distributions in normal CNS structures and in brain tumors. Parametric curves for the MITR-II M67 epithermal neutron beam, showing the gain factors (gain factor = minimum tumor dose/maximum normal brain dose) for various combinations of boron concentrations in tumor and in normal brain, are presented.

RESULTS

The NCTPLAN code provides good computational agreement with experimental measurements for all dose components along the neutron beam central axis in a head phantom. For the M67 epithermal beam the gain factor for 1, boronophenylalanine for a small midline brain tumor under typical distribution assumptions is 1.4-1.8 x . Implementation of the code under clinical conditions is demonstrated.

CONCLUSION

The NCTPLAN code has been shown to be well suited to treatment-planning applications in BNCT. Comparison of computationally derived dose distributions in a phantom compared with experimental measurements demonstrates good agreement. Automatic superposition of isodose contours with corresponding CT image data provides the ability to evaluate BNCT doses to tumor and to normal structures. Calculation of gain factors suggests that for the M67 epithermal neutron beam, more advantage is gained from increasing boron concentrations in tumor than from increasing the boron tumor-to-normal brain ratio.

摘要

目的

已开发出一种基于蒙特卡罗方法的硼中子俘获疗法(BNCT)治疗计划代码NCTPLAN,以支持新英格兰医学中心-麻省理工学院的BNCT项目。该代码已用于正在进行的外周黑色素瘤BNCT方案中的治疗计划制定。本文描述了该代码的概念和设计,并展示了一些示例应用。

方法与材料

NCTPLAN使用薄层计算机断层扫描(CT)图像数据自动创建相关身体部位的异质多材料模型,然后将其用作蒙特卡罗模拟代码MCNP的输入,以得出模型内的剂量分布。结果以等剂量线叠加在身体部位精确对应的CT图像上的形式显示。目前,剂量计算的计算速度较慢,妨碍了本身高效的治疗计划制定,但确实为放射肿瘤学家提供了将输送到肿瘤和各种正常组织的剂量的预览,并允许针对特定剂量处方计算以兆瓦分钟(MW-min)为单位的中子照射时间。展示了通过实验混合场剂量测定法对NCTPLAN结果的验证。举例说明了一个典型应用,即对一名患有多形性胶质母细胞瘤的人类受试者进行颅部平行相对超热中子束照射,显示了正常中枢神经系统结构和脑肿瘤中的相对生物效应-等剂量线(RBE)分布。给出了MITR-II M67超热中子束的参数曲线,显示了肿瘤和正常脑中硼浓度的各种组合的增益因子(增益因子=最小肿瘤剂量/最大正常脑剂量)。

结果

NCTPLAN代码对于头部模型中沿中子束中心轴的所有剂量成分,与实验测量结果在计算上具有良好的一致性。对于M67超热束,在典型分布假设下,对于一个小的中线脑肿瘤,1,硼代苯丙氨酸的增益因子为1.4 - 1.8x。展示了该代码在临床条件下的实施情况。

结论

已证明NCTPLAN代码非常适合BNCT中的治疗计划应用。将模型中通过计算得出的剂量分布与实验测量结果进行比较,显示出良好的一致性。等剂量线轮廓与相应CT图像数据的自动叠加提供了评估BNCT对肿瘤和正常结构剂量的能力。增益因子的计算表明,对于M67超热中子束,增加肿瘤中的硼浓度比增加肿瘤与正常脑的硼比值能获得更多优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验