Facultad de Educación de Cuenca, Avenida de los Alfares 44, 16071 Universidad de Castilla la Mancha, Cuenca, Spain.
Phys Biol. 2012 Jun;9(3):036008. doi: 10.1088/1478-3975/9/3/036008. Epub 2012 Jun 8.
The E-cadherin adhesive profile expressed by a tumour is a characterization of the intracellular and intercellular protein interactions that control cell-cell adhesion. Within the intracellular proteins that determine the tumour adhesive profile, Src and PI3 are two essentials to initiate the formation of the E-cadherin adhesion complex. On the other hand, Src has also the capability of disrupting the β-catenin-E-cadherin complex and down-regulating cell-cell adhesion. In this paper, using a multi-scale mathematical model, we study the role of each of these proteins in the adhesive profile and invasive properties of the tumour. To do this, we create three versions of an intracellular model that explains the interplay between the proteins E-cadherin, β-catenin, Src and PI3; and we couple them to the strength of the cell-cell adhesion forces within an individual-cell-based model. The simulation results show how the tumour profile and its aggressive potential may change depending on the intrinsic characteristics of the protein pathways, and how these pathways may influence the early stages of cancer invasion. Our major findings may be summarized as follows. (1) Intermediate levels of Src synthesis rates generate the least invasive tumour phenotype. (2) Conclusions drawn from findings obtained from the intracellular molecular dynamics (here cadherin-catenin binding complexes) to the multi-cellular invasive potential of a tumour may be misleading or erroneous. The conclusions should be validated in a multi-cellular context on timescales relevant for population growth. (3) Monoclonal populations of more cohesive cells with otherwise equal properties tend to grow slower. (4) Less cohesive cells tend to outcompete more cohesive cells. (5) Less cohesive cells have a larger probability of invasion as migration forces can more easily outbalance cohesive forces.
肿瘤细胞的 E-钙黏蛋白黏附表型是对细胞间和细胞内蛋白相互作用的特征描述,这些作用控制着细胞间的黏附。在决定肿瘤黏附表型的细胞内蛋白中,Src 和 PI3 是启动 E-钙黏蛋白黏附复合物形成的两个必要因素。另一方面,Src 还具有破坏β-连环蛋白-E-钙黏蛋白复合物并下调细胞间黏附的能力。在本文中,我们使用多尺度数学模型研究了这些蛋白中的每一种在肿瘤黏附表型和侵袭特性中的作用。为此,我们创建了三个版本的细胞内模型,分别解释了 E-钙黏蛋白、β-连环蛋白、Src 和 PI3 蛋白之间的相互作用;并将它们与基于单个细胞的模型中的细胞间黏附力的强度耦合。模拟结果表明,肿瘤表型及其侵袭潜力可能会根据蛋白通路的内在特性而发生变化,以及这些通路可能会如何影响癌症侵袭的早期阶段。我们的主要发现可以概括如下。(1)中等水平的 Src 合成速率会产生侵袭性最小的肿瘤表型。(2)从细胞内分子动力学(这里是钙黏蛋白-连环蛋白结合复合物)到肿瘤的多细胞侵袭潜力得出的结论可能会产生误导或错误。这些结论应该在与群体生长相关的时间尺度上在多细胞环境中进行验证。(3)具有其他相同特性的更具凝聚力的细胞的单克隆群体往往生长缓慢。(4)凝聚力较低的细胞往往更具竞争力。(5)凝聚力较低的细胞具有更大的入侵可能性,因为迁移力更容易平衡黏附力。