Suppr超能文献

数字孪生技术揭示了生物力学生长控制在部分肝切除术后肝脏再生中的重要性。

Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy.

作者信息

Hoehme Stefan, Hammad Seddik, Boettger Jan, Begher-Tibbe Brigitte, Bucur Petru, Vibert Eric, Gebhardt Rolf, Hengstler Jan G, Drasdo Dirk

机构信息

Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany.

Institute of Computer Science, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany.

出版信息

iScience. 2022 Dec 5;26(1):105714. doi: 10.1016/j.isci.2022.105714. eCollection 2023 Jan 20.

Abstract

Partial liver removal is an important therapy option for liver cancer. In most patients within a few weeks, the liver is able to fully regenerate. In some patients, however, regeneration fails with often severe consequences. To better understand the control mechanisms of liver regeneration, experiments in mice were performed, guiding the creation of a spatiotemporal 3D model of the regenerating liver. The model represents cells and blood vessels within an entire liver lobe, a macroscopic liver subunit. The model could reproduce the experimental data only if a biomechanical growth control (BGC)-mechanism, inhibiting cell cycle entrance at high compression, was taken into account and predicted that BGC may act as a short-range growth inhibitor minimizing the number of proliferating neighbor cells of a proliferating cell, generating a checkerboard-like proliferation pattern. Model-predicted cell proliferation patterns in pigs and mice were found experimentally. The results underpin the importance of biomechanical aspects in liver growth control.

摘要

部分肝切除是肝癌的一种重要治疗选择。在大多数患者中,肝脏能够在几周内完全再生。然而,在一些患者中,肝脏再生失败,往往会产生严重后果。为了更好地理解肝脏再生的控制机制,研究人员在小鼠身上进行了实验,从而构建了一个再生肝脏的时空三维模型。该模型展示了整个肝叶(肝脏的一个宏观亚单位)内的细胞和血管。只有考虑到一种生物力学生长控制(BGC)机制(即在高压力下抑制细胞周期进入),该模型才能重现实验数据,并预测BGC可能作为一种短程生长抑制剂,使增殖细胞的增殖相邻细胞数量最少,从而产生棋盘状的增殖模式。实验发现了猪和小鼠模型预测的细胞增殖模式。这些结果证实了生物力学因素在肝脏生长控制中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b54/9860368/82ddb27372ff/fx1.jpg

相似文献

1
Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy.
iScience. 2022 Dec 5;26(1):105714. doi: 10.1016/j.isci.2022.105714. eCollection 2023 Jan 20.
2
A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage.
iScience. 2023 Sep 28;27(2):108077. doi: 10.1016/j.isci.2023.108077. eCollection 2024 Feb 16.
3
Endothelial-directed hepatic regeneration after partial hepatectomy.
Ann Surg. 2003 Apr;237(4):530-5. doi: 10.1097/01.SLA.0000059986.96051.EA.
4
The impact of the intra-abdominal space on liver regeneration after a partial hepatectomy in rats.
J Surg Res. 2011 Nov;171(1):259-65. doi: 10.1016/j.jss.2010.01.012. Epub 2010 Feb 4.
6
Hepatic regeneration in insulin-like growth factor binding protein-1 transgenic mice.
J Hepatol. 1999 Apr;30(4):674-80. doi: 10.1016/s0168-8278(99)80199-8.
7
Fractal geometry of mosaic pattern demonstrates liver regeneration is a self-similar process.
Dev Biol. 1992 Jun;151(2):419-30. doi: 10.1016/0012-1606(92)90182-g.
9
Notch signaling pathway regulates cell cycle in proliferating hepatocytes involved in liver regeneration.
J Gastroenterol Hepatol. 2018 Aug;33(8):1538-1547. doi: 10.1111/jgh.14110. Epub 2018 Mar 24.

引用本文的文献

1
Donor-specific digital twin for living donor liver transplant recovery.
Biol Methods Protoc. 2025 May 10;10(1):bpaf037. doi: 10.1093/biomethods/bpaf037. eCollection 2025.
2
From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling.
iScience. 2024 Nov 5;27(12):111322. doi: 10.1016/j.isci.2024.111322. eCollection 2024 Dec 20.
3
The evolution and revolution of artificial intelligence in hepatology: From current applications to future paradigms.
Hepatol Forum. 2024 Jul 2;5(3):97-99. doi: 10.14744/hf.2024.2024.ed0001. eCollection 2024.
4
Cross-species variability in lobular geometry and cytochrome P450 hepatic zonation: insights into CYP1A2, CYP2D6, CYP2E1 and CYP3A4.
Front Pharmacol. 2024 May 16;15:1404938. doi: 10.3389/fphar.2024.1404938. eCollection 2024.
5
A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage.
iScience. 2023 Sep 28;27(2):108077. doi: 10.1016/j.isci.2023.108077. eCollection 2024 Feb 16.

本文引用的文献

1
Guided interactive image segmentation using machine learning and color-based image set clustering.
Bioinformatics. 2022 Sep 30;38(19):4622-4628. doi: 10.1093/bioinformatics/btac547.
3
Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration.
Mol Syst Biol. 2020 Feb;16(2):e8985. doi: 10.15252/msb.20198985.
4
Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice.
Science. 2019 Nov 22;366(6468):1029-1034. doi: 10.1126/science.aaw9886.
5
A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues.
Biomech Model Mechanobiol. 2020 Feb;19(1):189-220. doi: 10.1007/s10237-019-01204-7. Epub 2019 Nov 20.
6
Hybrid modeling frameworks of tumor development and treatment.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1461. doi: 10.1002/wsbm.1461. Epub 2019 Jul 17.
7
Hippo Signaling in the Liver - A Long and Ever-Expanding Story.
Front Cell Dev Biol. 2019 Mar 12;7:33. doi: 10.3389/fcell.2019.00033. eCollection 2019.
8
Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines.
PLoS Comput Biol. 2019 Mar 8;15(3):e1006273. doi: 10.1371/journal.pcbi.1006273. eCollection 2019 Mar.
9
A Review of Cell-Based Computational Modeling in Cancer Biology.
JCO Clin Cancer Inform. 2019 Feb;3:1-13. doi: 10.1200/CCI.18.00069.
10
Cellular Mechanotransduction: From Tension to Function.
Front Physiol. 2018 Jul 5;9:824. doi: 10.3389/fphys.2018.00824. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验