Départment de Pédiatrie, Centre de Recherche de l'Hôpital St-François d'Assise (CR-SFA), Centre Hospitalier Universitaire de Québec (CHUQ), Faculté de Médecine, Université Laval, Québec, QC, Canada.
Respir Physiol Neurobiol. 2012 Aug 15;183(2):115-21. doi: 10.1016/j.resp.2012.05.027. Epub 2012 Jun 8.
Clinical use of erythropoietin in adult and newborn patients has revealed its involvement in neuroprotection, neurogenesis, and angiogenesis. More recently, we showed in adult mouse, that brain erythropoietin interacts with the major brainstem centers associated with respiration to enhance the ventilatory response to acute and chronic conditions of physiological hypoxia (e.g., as occurring at high altitude). However, whether brain erythropoietin is involved in breathing regulation in newborns remains unknown. In this study, en bloc brainstem-spinal cord preparations were obtained from mice at postnatal day 4. After various periods (30, 60, or 90 min) of incubation with 0, 25, or 250 U of erythropoietin, preparations were superfused with artificial cerebrospinal fluid bubbled with normoxic or hypoxic gas mixtures. The electrophysiological fictive breathing produced by axons at the C4 ventral root was next recorded. Our results show that erythropoietin attenuates the hypoxia-mediated decrease of the central respiratory activity and improves post-hypoxic recovery. Additional analysis revealed that the soluble erythropoietin receptor (the endogenous erythropoietin antagonist) dramatically decreases neural hypoxic respiratory activity, confirming the specific erythropoietin effect on respiratory drive. These results imply that erythropoietin exerts main modulation and maintenance of respiratory motor output during hypoxic and post-hypoxic challenges in 4-days old mice.
在成人和新生儿患者中,促红细胞生成素的临床应用揭示了其在神经保护、神经发生和血管生成中的作用。最近,我们在成年小鼠中表明,大脑促红细胞生成素与与呼吸相关的主要脑干中心相互作用,以增强对急性和慢性生理缺氧条件(例如,在高海拔地区发生的缺氧)的通气反应。然而,大脑促红细胞生成素是否参与新生儿的呼吸调节仍不清楚。在这项研究中,从出生后第 4 天的小鼠中获得脑-脊髓整块标本。在与 0、25 或 250 U 促红细胞生成素孵育 30、60 或 90 分钟后,用含氧或缺氧混合气体对标本进行超灌流。接下来,记录 C4 腹根轴突产生的电生理拟呼吸。我们的结果表明,促红细胞生成素可减轻缺氧引起的中枢呼吸活动下降,并改善缺氧后恢复。进一步的分析表明,可溶性促红细胞生成素受体(内源性促红细胞生成素拮抗剂)显著降低了神经缺氧呼吸活动,证实了促红细胞生成素对呼吸驱动的特异性作用。这些结果表明,促红细胞生成素在 4 天大的小鼠的缺氧和缺氧后挑战期间对呼吸运动输出发挥主要的调节和维持作用。