Hacques M F, Marion C
Laboratoire de Physico-chimie Biologique, LBTM CNRS, UMR 24 Université Claude Bernard, Lyon I, Villeurbanne, France.
J Biomol Struct Dyn. 1990 Oct;8(2):439-58. doi: 10.1080/07391102.1990.10507815.
The role of histone H1 in the actual interactions bringing about chromatin folding is investigated by studying the reversibility of its dissociation. H1 was dissociated by increase of the NaCl concentration and reassociated by dialysis, without removal from the dialysis bag. To scrutinize the fidelity of this stoichiometric form of chromatin reconstitution, we use circular dichroism, nuclease digestion, thermal denaturation and the sensitive electric birefringence method. No alteration of the repeat length and no nucleosomal sliding are observed upon the reassociation procedure. However, under all the different conditions investigated, the original value of the positive electric birefringence is never recovered, indicating an irreversible change of structure. CD and melting profiles confirm that DNA-protein interactions are modified, and orientational relaxation time measurements indicate that these structural perturbations affect the salt-induced transition of polynucleosomal fibers. The striking conclusion of these studies is that variations of ionic concentration are sufficient to induce irreversible structural alterations affecting the higher-order folding of chromatin. It is of interest that the only sample which exhibits behavior upon reassociation comparable to that of native chromatin is the one which experienced the fastest salt transitions. We suggest that these conformational changes arise from the unbinding to DNA of certain basic tails of histone(s), and that a competition for DNA binding locations exists upon the reassociation. These results are then additional arguments (Mazen, A., Hacques, M.F. and Marion, C.,J. Mol. Biol. 194, 741-745 (1987)), to suggest that dissociation of H1 might modify a direct interaction between basic tails of core histones and H1.
通过研究组蛋白H1解离的可逆性,来探究其在引起染色质折叠的实际相互作用中的作用。通过增加氯化钠浓度使H1解离,并通过透析使其重新结合,且不将其从透析袋中取出。为了仔细检查这种化学计量形式的染色质重构的保真度,我们使用圆二色性、核酸酶消化、热变性和灵敏的电双折射方法。在重新结合过程中未观察到重复长度的改变和核小体滑动。然而,在所研究的所有不同条件下,正电双折射的原始值从未恢复,这表明结构发生了不可逆的变化。圆二色性和熔解曲线证实了DNA-蛋白质相互作用被改变,并且取向弛豫时间测量表明这些结构扰动影响了多核小体纤维的盐诱导转变。这些研究的惊人结论是,离子浓度的变化足以诱导影响染色质高阶折叠的不可逆结构改变。有趣的是,唯一在重新结合时表现出与天然染色质相当行为的样品是经历最快盐转变的样品。我们认为这些构象变化源于组蛋白某些碱性尾巴与DNA的解离,并且在重新结合时存在对DNA结合位点的竞争。这些结果是进一步的论据(Mazen, A., Hacques, M.F. 和 Marion, C.,J. Mol. Biol. 194, 741 - 745 (1987)),表明H1的解离可能会改变核心组蛋白碱性尾巴与H1之间的直接相互作用。