Totzeck Matthias, Hendgen-Cotta Ulrike B, Luedike Peter, Berenbrink Michael, Klare Johann P, Steinhoff Heinz-Juergen, Semmler Dominik, Shiva Sruti, Williams Daryl, Kipar Anja, Gladwin Mark T, Schrader Juergen, Kelm Malte, Cossins Andrew R, Rassaf Tienush
Department of Medicine, Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Duesseldorf, Germany.
Circulation. 2012 Jul 17;126(3):325-34. doi: 10.1161/CIRCULATIONAHA.111.087155. Epub 2012 Jun 9.
Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contribute to cardiomyocyte NO· signaling during ischemia. On the basis of recent observations that myoglobin is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular myoglobin to form NO·.
We show in the present study that myoglobin is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO· from nitrite reduction by deoxygenated myoglobin activates canonical soluble guanylate cyclase/cGMP signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO·, and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin. Hypoxic vasodilation studies in myoglobin and endothelial and inducible NO synthase knockout models suggest that only myoglobin contributes to systemic hypoxic vasodilatory responses in mice.
Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO· via the heme globin myoglobin enhances blood flow and matches O(2) supply to increased metabolic demands under hypoxic conditions.
缺氧性血管舒张是对低氧张力的一种生理反应,可增加血液供应以匹配代谢需求。尽管这种反应已被研究了100多年,但其潜在的缺氧传感和效应器信号传导机制仍不明确。我们已经表明,心脏中的脱氧肌红蛋白可将亚硝酸盐还原为一氧化氮(NO·),从而在缺血期间有助于心肌细胞的NO·信号传导。基于最近观察到肌红蛋白在耐缺氧鱼类的血管系统中表达,我们推测内源性亚硝酸盐可能通过与血管肌红蛋白反应形成NO·而有助于生理性缺氧性血管舒张。
我们在本研究中表明,肌红蛋白在血管平滑肌中表达,并且在体内和体外对亚硝酸盐依赖性缺氧性血管舒张有显著贡献。脱氧肌红蛋白将亚硝酸盐还原产生的NO·激活经典的可溶性鸟苷酸环化酶/cGMP信号通路。在没有肌红蛋白的小鼠中,体内和体外血管舒张反应、亚硝酸盐还原为NO·以及随后的信号转导机制均显著受损。在肌红蛋白、内皮型和诱导型一氧化氮合酶基因敲除模型中的缺氧性血管舒张研究表明,只有肌红蛋白对小鼠的全身性缺氧性血管舒张反应有贡献。
内源性亚硝酸盐是缺氧性血管舒张的生理效应器。在缺氧条件下,它通过血红素球蛋白肌红蛋白还原为NO·可增加血流量,并使氧气供应与增加的代谢需求相匹配。