Suppr超能文献

正常:使用改进的高斯混合模型进行准确的核小体定位。

NORMAL: accurate nucleosome positioning using a modified Gaussian mixture model.

机构信息

Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA.

出版信息

Bioinformatics. 2012 Jun 15;28(12):i242-9. doi: 10.1093/bioinformatics/bts206.

Abstract

MOTIVATION

Nucleosomes are the basic elements of chromatin structure. They control the packaging of DNA and play a critical role in gene regulation by allowing physical access to transcription factors. The advent of second-generation sequencing has enabled landmark genome-wide studies of nucleosome positions for several model organisms. Current methods to determine nucleosome positioning first compute an occupancy coverage profile by mapping nucleosome-enriched sequenced reads to a reference genome; then, nucleosomes are placed according to the peaks of the coverage profile. These methods are quite accurate on placing isolated nucleosomes, but they do not properly handle more complex configurations. Also, they can only provide the positions of nucleosomes and their occupancy level, whereas it is very beneficial to supply molecular biologists additional information about nucleosomes like the probability of placement, the size of DNA fragments enriched for nucleosomes and/or whether nucleosomes are well positioned or 'fuzzy' in the sequenced cell sample.

RESULTS

We address these issues by providing a novel method based on a parametric probabilistic model. An expectation maximization algorithm is used to infer the parameters of the mixture of distributions. We compare the performance of our method on two real datasets against Template Filtering, which is considered the current state-of-the-art. On synthetic data, we show that our method can resolve more accurately complex configurations of nucleosomes, and it is more robust to user-defined parameters. On real data, we show that our method detects a significantly higher number of nucleosomes.

AVAILABILITY

Visit http://www.cs.ucr.edu/~polishka.

摘要

动机

核小体是染色质结构的基本元件。它们控制着 DNA 的包装,通过允许转录因子物理接触,在基因调控中起着至关重要的作用。第二代测序技术的出现使我们能够对几个模式生物的核小体位置进行具有里程碑意义的全基因组研究。目前确定核小体定位的方法首先通过将富含核小体的测序reads 映射到参考基因组来计算占有率覆盖图;然后,根据覆盖图的峰值放置核小体。这些方法在放置孤立的核小体时非常准确,但它们不能正确处理更复杂的构象。此外,它们只能提供核小体的位置及其占有率水平,而提供关于核小体的额外信息,如放置概率、富含核小体的 DNA 片段大小以及核小体在测序细胞样本中是否定位良好或“模糊”,对分子生物学家非常有益。

结果

我们通过提供一种基于参数概率模型的新方法来解决这些问题。我们使用期望最大化算法来推断分布混合的参数。我们在两个真实数据集上比较了我们的方法与被认为是当前最先进的模板过滤(Template Filtering)的性能。在合成数据上,我们表明我们的方法可以更准确地解析核小体的复杂构象,并且对用户定义的参数更稳健。在真实数据上,我们表明我们的方法可以检测到更多的核小体。

可用性

访问 http://www.cs.ucr.edu/~polishka。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/341b/3371838/e27c4dcbb7a2/bts206f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验