Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA.
Infect Immun. 2012 Sep;80(9):3049-64. doi: 10.1128/IAI.00231-12. Epub 2012 Jun 11.
The opportunistic pathogen Pseudomonas aeruginosa targets wounded epithelial barriers, but the cellular alteration that increases susceptibility to P. aeruginosa infection remains unclear. This study examined how cell migration contributes to the establishment of P. aeruginosa infections using (i) highly migratory T24 epithelial cells as a cell culture model, (ii) mutations in the type III secretion (T3S) effector ExoS to manipulate P. aeruginosa infection, and (iii) high-resolution immunofluorescent microscopy to monitor ExoS translocation. ExoS includes both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities, and P. aeruginosa cells expressing wild-type ExoS preferentially bound to the leading edge of T24 cells, where ExoS altered leading-edge architecture and actin anchoring in conjunction with interrupting T3S translocation. Inactivation of ExoS GAP activity allowed P. aeruginosa to be internalized and secrete ExoS within T24 cells, but as with wild-type ExoS, translocation was limited in association with disruption of actin anchoring. Inactivation of ExoS ADPRT activity resulted in significantly enhanced T3S translocation by P. aeruginosa cells that remained extracellular and in conjunction with maintenance of actin-plasma membrane association. Infection with P. aeruginosa expressing ExoS lacking both GAP and ADPRT activities resulted in the highest level of T3S translocation, and this occurred in conjunction with the entry and alignment of P. aeruginosa and ExoS along actin filaments. Collectively, in using ExoS mutants to modulate and visualize T3S translocation, we were able to (i) confirm effector secretion by internalized P. aeruginosa, (ii) differentiate the mechanisms underlying the effects of ExoS GAP and ADPRT activities on P. aeruginosa internalization and T3S translocation, (iii) confirm that ExoS ADPRT activity targeted a cellular substrate that interrupted T3S translocation, (iv) visualize the ability of P. aeruginosa and ExoS to align with actin filaments, and (v) demonstrate an association between actin anchoring at the leading edge of T24 cells and the establishment of P. aeruginosa infection. Our studies also highlight the contribution of ExoS to the opportunistic nature of P. aeruginosa infection through its ability to exert cytotoxic effects that interrupt T3S translocation and P. aeruginosa internalization, which in turn limit the P. aeruginosa infectious process.
机会性病原体铜绿假单胞菌靶向受伤的上皮屏障,但增加对铜绿假单胞菌感染易感性的细胞改变仍不清楚。本研究使用(i)高迁移性 T24 上皮细胞作为细胞培养模型,(ii)操纵铜绿假单胞菌感染的 III 型分泌(T3S)效应物 ExoS 的突变,以及(iii)高分辨率免疫荧光显微镜监测 ExoS 易位,来研究细胞迁移如何促进铜绿假单胞菌感染的建立。ExoS 包含 GTP 酶激活(GAP)和 ADP-核糖基转移酶(ADPRT)活性,表达野生型 ExoS 的铜绿假单胞菌细胞优先与 T24 细胞的前缘结合,在那里 ExoS 改变了前缘结构并与 T3S 易位中断一起固定肌动蛋白锚定。ExoS GAP 活性的失活允许铜绿假单胞菌被内化并在 T24 细胞内分泌 ExoS,但与野生型 ExoS 一样,易位受到肌动蛋白锚定的破坏限制。ExoS ADPRT 活性的失活导致细胞外的铜绿假单胞菌细胞的 T3S 易位显著增强,并且与肌动蛋白-质膜结合的维持有关。表达缺乏 GAP 和 ADPRT 活性的 ExoS 的铜绿假单胞菌感染导致 T3S 易位水平最高,这与铜绿假单胞菌和 ExoS 沿着肌动蛋白丝进入和对齐有关。总的来说,通过使用 ExoS 突变体来调节和可视化 T3S 易位,我们能够(i)确认内化的铜绿假单胞菌分泌效应物,(ii)区分 ExoS GAP 和 ADPRT 活性对铜绿假单胞菌内化和 T3S 易位的影响机制,(iii)证实 ExoS ADPRT 活性针对的是一种细胞底物,该底物中断了 T3S 易位,(iv)可视化铜绿假单胞菌和 ExoS 与肌动蛋白丝对齐的能力,以及(v)证明 T24 细胞前缘肌动蛋白锚定与铜绿假单胞菌感染建立之间的关联。我们的研究还通过其发挥细胞毒性作用来强调 ExoS 对铜绿假单胞菌感染机会性的贡献,该作用中断了 T3S 易位和铜绿假单胞菌内化,进而限制了铜绿假单胞菌的感染过程。