Suppr超能文献

相似文献

1
Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10298-303. doi: 10.1073/pnas.1202747109. Epub 2012 Jun 11.
2
In vitro assembly and cellulolytic activity of a β-glucosidase-integrated cellulosome complex.
FEMS Microbiol Lett. 2019 Sep 1;366(17). doi: 10.1093/femsle/fnz209.
4
Constructing a yeast to express the largest cellulosome complex on the cell surface.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2385-2394. doi: 10.1073/pnas.1916529117. Epub 2020 Jan 17.
5
The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation.
Enzyme Microb Technol. 2018 Aug;115:52-61. doi: 10.1016/j.enzmictec.2018.04.009. Epub 2018 May 1.
6
Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.03088-16. Print 2017 Apr 15.
8
Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states.
Appl Environ Microbiol. 2010 May;76(10):3236-43. doi: 10.1128/AEM.00009-10. Epub 2010 Mar 26.

引用本文的文献

1
Structure-Based Engineering to Improve Thermostability of Bgl1A β‑Glucosidase.
ACS Omega. 2025 Jun 18;10(25):27153-27164. doi: 10.1021/acsomega.5c02381. eCollection 2025 Jul 1.
2
Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance.
Front Microbiol. 2025 Apr 25;16:1583746. doi: 10.3389/fmicb.2025.1583746. eCollection 2025.
3
Effective semi-fed-batch saccharification with high lignocellulose loading using co-culture of and strain A9.
Front Microbiol. 2025 Jan 7;15:1519060. doi: 10.3389/fmicb.2024.1519060. eCollection 2024.
4
Bioconversion of non-food corn biomass to polyol esters of fatty acid and single-cell oils.
Biotechnol Biofuels Bioprod. 2023 Jan 17;16(1):9. doi: 10.1186/s13068-023-02260-z.
7
Biological cellulose saccharification using a coculture of Clostridium thermocellum and Thermobrachium celere strain A9.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2133-2145. doi: 10.1007/s00253-022-11818-0. Epub 2022 Feb 14.
8
Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei.
mBio. 2021 May 11;12(3):e03671-20. doi: 10.1128/mBio.03671-20.
9
Cellulosomes: Highly Efficient Cellulolytic Complexes.
Subcell Biochem. 2021;96:323-354. doi: 10.1007/978-3-030-58971-4_9.

本文引用的文献

1
Substrate channeling and enzyme complexes for biotechnological applications.
Biotechnol Adv. 2011 Nov-Dec;29(6):715-25. doi: 10.1016/j.biotechadv.2011.05.020. Epub 2011 Jun 7.
4
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.
Annu Rev Biochem. 2010;79:655-81. doi: 10.1146/annurev-biochem-091208-085603.
5
Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states.
Appl Environ Microbiol. 2010 May;76(10):3236-43. doi: 10.1128/AEM.00009-10. Epub 2010 Mar 26.
6
Comparative kinetic analysis of two fungal beta-glucosidases.
Biotechnol Biofuels. 2010 Feb 11;3(1):3. doi: 10.1186/1754-6834-3-3.
7
An overview of second generation biofuel technologies.
Bioresour Technol. 2010 Mar;101(6):1570-80. doi: 10.1016/j.biortech.2009.11.046. Epub 2009 Dec 5.
8
Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
Appl Environ Microbiol. 2009 Oct;75(19):6087-93. doi: 10.1128/AEM.01538-09. Epub 2009 Aug 14.
9
Lignocellulose conversion to biofuels: current challenges, global perspectives.
Curr Opin Biotechnol. 2009 Jun;20(3):316-7. doi: 10.1016/j.copbio.2009.05.005. Epub 2009 Jun 10.
10
Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose.
Biotechnol Biofuels. 2009 Jun 8;2(1):11. doi: 10.1186/1754-6834-2-11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验